intel/perf: move perf-related state into gen_perf_context

To move more operations into intel/perf, several state items are
needed.  Save references to that state in the perf_ctxt, rather than
passing them in for every operation.

This commit includes an initializer for gen_perf_context, to set those
references and also encapsulate the initialization of the sample
buffer state.

Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
This commit is contained in:
Mark Janes
2019-08-06 10:00:16 -07:00
parent df18acee78
commit 52d3db9ab6
3 changed files with 80 additions and 49 deletions

View File

@@ -991,3 +991,39 @@ gen_perf_dec_n_users(struct gen_perf_context *perf_ctx)
DBG("WARNING: Error disabling gen perf stream: %m\n"); DBG("WARNING: Error disabling gen perf stream: %m\n");
} }
} }
void
gen_perf_init_context(struct gen_perf_context *perf_ctx,
struct gen_perf_config *perf_cfg,
void * ctx, /* driver context (eg, brw_context) */
void * bufmgr, /* eg brw_bufmgr */
const struct gen_device_info *devinfo,
uint32_t hw_ctx,
int drm_fd)
{
perf_ctx->perf = perf_cfg;
perf_ctx->ctx = ctx;
perf_ctx->bufmgr = bufmgr;
perf_ctx->drm_fd = drm_fd;
perf_ctx->hw_ctx = hw_ctx;
perf_ctx->devinfo = devinfo;
perf_ctx->unaccumulated =
ralloc_array(ctx, struct gen_perf_query_object *, 2);
perf_ctx->unaccumulated_elements = 0;
perf_ctx->unaccumulated_array_size = 2;
exec_list_make_empty(&perf_ctx->sample_buffers);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
/* It's convenient to guarantee that this linked list of sample
* buffers is never empty so we add an empty head so when we
* Begin an OA query we can always take a reference on a buffer
* in this list.
*/
struct oa_sample_buf *buf = gen_perf_get_free_sample_buf(perf_ctx);
exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
perf_ctx->oa_stream_fd = -1;
perf_ctx->next_query_start_report_id = 1000;
}

View File

@@ -428,6 +428,13 @@ struct gen_perf_query_object
struct gen_perf_context { struct gen_perf_context {
struct gen_perf_config *perf; struct gen_perf_config *perf;
void * ctx; /* driver context (eg, brw_context) */
void * bufmgr;
const struct gen_device_info *devinfo;
uint32_t hw_ctx;
int drm_fd;
/* The i915 perf stream we open to setup + enable the OA counters */ /* The i915 perf stream we open to setup + enable the OA counters */
int oa_stream_fd; int oa_stream_fd;
@@ -483,6 +490,14 @@ struct gen_perf_context {
int n_query_instances; int n_query_instances;
}; };
void gen_perf_init_context(struct gen_perf_context *perf_ctx,
struct gen_perf_config *perf_cfg,
void * ctx, /* driver context (eg, brw_context) */
void * bufmgr, /* eg brw_bufmgr */
const struct gen_device_info *devinfo,
uint32_t hw_ctx,
int drm_fd);
static inline size_t static inline size_t
gen_perf_query_counter_get_size(const struct gen_perf_query_counter *counter) gen_perf_query_counter_get_size(const struct gen_perf_query_counter *counter)
{ {

View File

@@ -706,7 +706,7 @@ brw_begin_perf_query(struct gl_context *ctx,
* This is our Begin synchronization point to drain current work on the * This is our Begin synchronization point to drain current work on the
* GPU before we capture our first counter snapshot... * GPU before we capture our first counter snapshot...
*/ */
perf_cfg->vtbl.emit_mi_flush(brw); perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
switch (query->kind) { switch (query->kind) {
case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_OA:
@@ -734,8 +734,7 @@ brw_begin_perf_query(struct gl_context *ctx,
/* If the OA counters aren't already on, enable them. */ /* If the OA counters aren't already on, enable them. */
if (perf_ctx->oa_stream_fd == -1) { if (perf_ctx->oa_stream_fd == -1) {
__DRIscreen *screen = brw->screen->driScrnPriv; const struct gen_device_info *devinfo = perf_ctx->devinfo;
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* The period_exponent gives a sampling period as follows: /* The period_exponent gives a sampling period as follows:
* sample_period = timestamp_period * 2^(period_exponent + 1) * sample_period = timestamp_period * 2^(period_exponent + 1)
@@ -791,7 +790,8 @@ brw_begin_perf_query(struct gl_context *ctx,
prev_sample_period / 1000000ul); prev_sample_period / 1000000ul);
if (!gen_perf_open(perf_ctx, metric_id, query->oa_format, if (!gen_perf_open(perf_ctx, metric_id, query->oa_format,
period_exponent, screen->fd, brw->hw_ctx)) period_exponent, perf_ctx->drm_fd,
perf_ctx->hw_ctx))
return false; return false;
} else { } else {
assert(perf_ctx->current_oa_metrics_set_id == metric_id && assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
@@ -808,15 +808,14 @@ brw_begin_perf_query(struct gl_context *ctx,
obj->oa.bo = NULL; obj->oa.bo = NULL;
} }
obj->oa.bo = obj->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
brw->perf_ctx.perf->vtbl.bo_alloc(brw->bufmgr,
"perf. query OA MI_RPC bo", "perf. query OA MI_RPC bo",
MI_RPC_BO_SIZE); MI_RPC_BO_SIZE);
#ifdef DEBUG #ifdef DEBUG
/* Pre-filling the BO helps debug whether writes landed. */ /* Pre-filling the BO helps debug whether writes landed. */
void *map = brw->perf_ctx.perf->vtbl.bo_map(brw, obj->oa.bo, MAP_WRITE); void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, obj->oa.bo, MAP_WRITE);
memset(map, 0x80, MI_RPC_BO_SIZE); memset(map, 0x80, MI_RPC_BO_SIZE);
brw->perf_ctx.perf->vtbl.bo_unmap(obj->oa.bo); perf_cfg->vtbl.bo_unmap(obj->oa.bo);
#endif #endif
obj->oa.begin_report_id = perf_ctx->next_query_start_report_id; obj->oa.begin_report_id = perf_ctx->next_query_start_report_id;
@@ -828,12 +827,12 @@ brw_begin_perf_query(struct gl_context *ctx,
* scheduler to load a new request into the hardware. This is manifested in * scheduler to load a new request into the hardware. This is manifested in
* tools like frameretrace by spikes in the "GPU Core Clocks" counter. * tools like frameretrace by spikes in the "GPU Core Clocks" counter.
*/ */
perf_cfg->vtbl.batchbuffer_flush(brw, __FILE__, __LINE__); perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
/* Take a starting OA counter snapshot. */ /* Take a starting OA counter snapshot. */
perf_cfg->vtbl.emit_mi_report_perf_count(brw, obj->oa.bo, 0, perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, obj->oa.bo, 0,
obj->oa.begin_report_id); obj->oa.begin_report_id);
perf_cfg->vtbl.capture_frequency_stat_register(brw, obj->oa.bo, perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, obj->oa.bo,
MI_FREQ_START_OFFSET_BYTES); MI_FREQ_START_OFFSET_BYTES);
++perf_ctx->n_active_oa_queries; ++perf_ctx->n_active_oa_queries;
@@ -858,23 +857,23 @@ brw_begin_perf_query(struct gl_context *ctx,
gen_perf_query_result_clear(&obj->oa.result); gen_perf_query_result_clear(&obj->oa.result);
obj->oa.results_accumulated = false; obj->oa.results_accumulated = false;
add_to_unaccumulated_query_list(brw, obj); add_to_unaccumulated_query_list(perf_ctx->ctx, obj);
break; break;
} }
case GEN_PERF_QUERY_TYPE_PIPELINE: case GEN_PERF_QUERY_TYPE_PIPELINE:
if (obj->pipeline_stats.bo) { if (obj->pipeline_stats.bo) {
brw->perf_ctx.perf->vtbl.bo_unreference(obj->pipeline_stats.bo); perf_cfg->vtbl.bo_unreference(obj->pipeline_stats.bo);
obj->pipeline_stats.bo = NULL; obj->pipeline_stats.bo = NULL;
} }
obj->pipeline_stats.bo = obj->pipeline_stats.bo =
brw->perf_ctx.perf->vtbl.bo_alloc(brw->bufmgr, perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
"perf. query pipeline stats bo", "perf. query pipeline stats bo",
STATS_BO_SIZE); STATS_BO_SIZE);
/* Take starting snapshots. */ /* Take starting snapshots. */
gen_perf_snapshot_statistics_registers(brw, perf_cfg, obj, 0); gen_perf_snapshot_statistics_registers(perf_ctx->ctx, perf_cfg, obj, 0);
++perf_ctx->n_active_pipeline_stats_queries; ++perf_ctx->n_active_pipeline_stats_queries;
break; break;
@@ -911,7 +910,7 @@ brw_end_perf_query(struct gl_context *ctx,
* For more details see comment in brw_begin_perf_query for * For more details see comment in brw_begin_perf_query for
* corresponding flush. * corresponding flush.
*/ */
perf_cfg->vtbl.emit_mi_flush(brw); perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
switch (obj->queryinfo->kind) { switch (obj->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_OA:
@@ -924,9 +923,9 @@ brw_end_perf_query(struct gl_context *ctx,
*/ */
if (!obj->oa.results_accumulated) { if (!obj->oa.results_accumulated) {
/* Take an ending OA counter snapshot. */ /* Take an ending OA counter snapshot. */
perf_cfg->vtbl.capture_frequency_stat_register(brw, obj->oa.bo, perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, obj->oa.bo,
MI_FREQ_END_OFFSET_BYTES); MI_FREQ_END_OFFSET_BYTES);
brw->vtbl.emit_mi_report_perf_count(brw, obj->oa.bo, brw->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, obj->oa.bo,
MI_RPC_BO_END_OFFSET_BYTES, MI_RPC_BO_END_OFFSET_BYTES,
obj->oa.begin_report_id + 1); obj->oa.begin_report_id + 1);
} }
@@ -1127,7 +1126,7 @@ get_pipeline_stats_data(struct brw_context *brw,
int n_counters = obj->queryinfo->n_counters; int n_counters = obj->queryinfo->n_counters;
uint8_t *p = data; uint8_t *p = data;
uint64_t *start = perf_cfg->vtbl.bo_map(brw, obj->pipeline_stats.bo, MAP_READ); uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, obj->pipeline_stats.bo, MAP_READ);
uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t)); uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
for (int i = 0; i < n_counters; i++) { for (int i = 0; i < n_counters; i++) {
@@ -1471,7 +1470,6 @@ brw_init_perf_query_info(struct gl_context *ctx)
{ {
struct brw_context *brw = brw_context(ctx); struct brw_context *brw = brw_context(ctx);
const struct gen_device_info *devinfo = &brw->screen->devinfo; const struct gen_device_info *devinfo = &brw->screen->devinfo;
__DRIscreen *screen = brw->screen->driScrnPriv;
struct gen_perf_context *perf_ctx = &brw->perf_ctx; struct gen_perf_context *perf_ctx = &brw->perf_ctx;
if (perf_ctx->perf) if (perf_ctx->perf)
@@ -1493,34 +1491,16 @@ brw_init_perf_query_info(struct gl_context *ctx)
perf_cfg->vtbl.store_register_mem64 = perf_cfg->vtbl.store_register_mem64 =
(store_register_mem64_t) brw_store_register_mem64; (store_register_mem64_t) brw_store_register_mem64;
gen_perf_init_context(perf_ctx, perf_cfg, brw, brw->bufmgr, devinfo,
brw->hw_ctx, brw->screen->driScrnPriv->fd);
init_pipeline_statistic_query_registers(brw); init_pipeline_statistic_query_registers(brw);
gen_perf_query_register_mdapi_statistic_query(&brw->screen->devinfo, gen_perf_query_register_mdapi_statistic_query(devinfo, perf_cfg);
brw->perf_ctx.perf);
if ((oa_metrics_kernel_support(screen->fd, devinfo)) && if ((oa_metrics_kernel_support(perf_ctx->drm_fd, devinfo)) &&
(gen_perf_load_oa_metrics(perf_cfg, screen->fd, devinfo))) (gen_perf_load_oa_metrics(perf_cfg, perf_ctx->drm_fd, devinfo)))
gen_perf_query_register_mdapi_oa_query(devinfo, perf_cfg); gen_perf_query_register_mdapi_oa_query(devinfo, perf_cfg);
perf_ctx->unaccumulated =
ralloc_array(brw, struct gen_perf_query_object *, 2);
perf_ctx->unaccumulated_elements = 0;
perf_ctx->unaccumulated_array_size = 2;
exec_list_make_empty(&perf_ctx->sample_buffers);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
/* It's convenient to guarantee that this linked list of sample
* buffers is never empty so we add an empty head so when we
* Begin an OA query we can always take a reference on a buffer
* in this list.
*/
struct oa_sample_buf *buf = gen_perf_get_free_sample_buf(&brw->perf_ctx);
exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
perf_ctx->oa_stream_fd = -1;
perf_ctx->next_query_start_report_id = 1000;
return perf_cfg->n_queries; return perf_cfg->n_queries;
} }