vk: Add script for generating ifunc entry points

This lets us generate a hash table for vkGetProcAddress and lets us call
public functions internally without the public entrypoint overhead.
This commit is contained in:
Kristian Høgsberg
2015-05-17 16:33:48 -07:00
parent 333bcc2072
commit 454345da1e
9 changed files with 403 additions and 122 deletions

2
.gitignore vendored
View File

@@ -46,3 +46,5 @@ manifest.txt
Makefile
Makefile.in
.install-mesa-links
entrypoints.c
entrypoints.h

View File

@@ -62,8 +62,20 @@ libvulkan_la_SOURCES = \
image.c \
meta.c \
intel.c \
entrypoints.c \
entrypoints.h \
compiler.cpp
BUILT_SOURCES = entrypoints.h entrypoints.c
entrypoints.h : $(vulkan_include_HEADERS) vk_gen.py
$(AM_V_GEN)cat $(vulkan_include_HEADERS) | $(PYTHON2) vk_gen.py header > $@
entrypoints.c : $(vulkan_include_HEADERS) vk_gen.py
$(AM_V_GEN)cat $(vulkan_include_HEADERS) | $(PYTHON2) vk_gen.py code > $@
CLEANFILES = entrypoints.h entrypoints.c
bin_PROGRAMS = vk
vk_SOURCES = vk.c

View File

@@ -114,7 +114,7 @@ static const VkAllocCallbacks default_alloc_callbacks = {
.pfnFree = default_free
};
VkResult VKAPI vkCreateInstance(
VkResult anv_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
VkInstance* pInstance)
{
@@ -150,7 +150,7 @@ VkResult VKAPI vkCreateInstance(
return VK_SUCCESS;
}
VkResult VKAPI vkDestroyInstance(
VkResult anv_DestroyInstance(
VkInstance _instance)
{
struct anv_instance *instance = (struct anv_instance *) _instance;
@@ -160,7 +160,7 @@ VkResult VKAPI vkDestroyInstance(
return VK_SUCCESS;
}
VkResult VKAPI vkEnumeratePhysicalDevices(
VkResult anv_EnumeratePhysicalDevices(
VkInstance _instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices)
@@ -174,7 +174,7 @@ VkResult VKAPI vkEnumeratePhysicalDevices(
return VK_SUCCESS;
}
VkResult VKAPI vkGetPhysicalDeviceInfo(
VkResult anv_GetPhysicalDeviceInfo(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceInfoType infoType,
size_t* pDataSize,
@@ -252,7 +252,7 @@ void * vkGetProcAddr(
VkPhysicalDevice physicalDevice,
const char* pName)
{
return NULL;
return anv_lookup_entrypoint(pName);
}
static void
@@ -275,7 +275,7 @@ parse_debug_flags(struct anv_device *device)
}
}
VkResult VKAPI vkCreateDevice(
VkResult anv_CreateDevice(
VkPhysicalDevice _physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
VkDevice* pDevice)
@@ -337,7 +337,7 @@ VkResult VKAPI vkCreateDevice(
return vk_error(VK_ERROR_UNAVAILABLE);
}
VkResult VKAPI vkDestroyDevice(
VkResult anv_DestroyDevice(
VkDevice _device)
{
struct anv_device *device = (struct anv_device *) _device;
@@ -358,7 +358,7 @@ VkResult VKAPI vkDestroyDevice(
return VK_SUCCESS;
}
VkResult VKAPI vkGetGlobalExtensionInfo(
VkResult anv_GetGlobalExtensionInfo(
VkExtensionInfoType infoType,
uint32_t extensionIndex,
size_t* pDataSize,
@@ -381,7 +381,7 @@ VkResult VKAPI vkGetGlobalExtensionInfo(
}
}
VkResult VKAPI vkGetPhysicalDeviceExtensionInfo(
VkResult anv_GetPhysicalDeviceExtensionInfo(
VkPhysicalDevice physicalDevice,
VkExtensionInfoType infoType,
uint32_t extensionIndex,
@@ -405,7 +405,7 @@ VkResult VKAPI vkGetPhysicalDeviceExtensionInfo(
}
}
VkResult VKAPI vkEnumerateLayers(
VkResult anv_EnumerateLayers(
VkPhysicalDevice physicalDevice,
size_t maxStringSize,
size_t* pLayerCount,
@@ -417,7 +417,7 @@ VkResult VKAPI vkEnumerateLayers(
return VK_SUCCESS;
}
VkResult VKAPI vkGetDeviceQueue(
VkResult anv_GetDeviceQueue(
VkDevice _device,
uint32_t queueNodeIndex,
uint32_t queueIndex,
@@ -559,7 +559,7 @@ anv_batch_emit_reloc(struct anv_batch *batch,
location - batch->bo.map, bo, delta);
}
VkResult VKAPI vkQueueSubmit(
VkResult anv_QueueSubmit(
VkQueue _queue,
uint32_t cmdBufferCount,
const VkCmdBuffer* pCmdBuffers,
@@ -591,7 +591,7 @@ VkResult VKAPI vkQueueSubmit(
return VK_SUCCESS;
}
VkResult VKAPI vkQueueAddMemReferences(
VkResult anv_QueueAddMemReferences(
VkQueue queue,
uint32_t count,
const VkDeviceMemory* pMems)
@@ -599,7 +599,7 @@ VkResult VKAPI vkQueueAddMemReferences(
return VK_SUCCESS;
}
VkResult VKAPI vkQueueRemoveMemReferences(
VkResult anv_QueueRemoveMemReferences(
VkQueue queue,
uint32_t count,
const VkDeviceMemory* pMems)
@@ -607,7 +607,7 @@ VkResult VKAPI vkQueueRemoveMemReferences(
return VK_SUCCESS;
}
VkResult VKAPI vkQueueWaitIdle(
VkResult anv_QueueWaitIdle(
VkQueue _queue)
{
struct anv_queue *queue = (struct anv_queue *) _queue;
@@ -615,7 +615,7 @@ VkResult VKAPI vkQueueWaitIdle(
return vkDeviceWaitIdle((VkDevice) queue->device);
}
VkResult VKAPI vkDeviceWaitIdle(
VkResult anv_DeviceWaitIdle(
VkDevice _device)
{
struct anv_device *device = (struct anv_device *) _device;
@@ -717,7 +717,7 @@ anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
return VK_SUCCESS;
}
VkResult VKAPI vkAllocMemory(
VkResult anv_AllocMemory(
VkDevice _device,
const VkMemoryAllocInfo* pAllocInfo,
VkDeviceMemory* pMem)
@@ -747,7 +747,7 @@ VkResult VKAPI vkAllocMemory(
return result;
}
VkResult VKAPI vkFreeMemory(
VkResult anv_FreeMemory(
VkDevice _device,
VkDeviceMemory _mem)
{
@@ -765,7 +765,7 @@ VkResult VKAPI vkFreeMemory(
return VK_SUCCESS;
}
VkResult VKAPI vkSetMemoryPriority(
VkResult anv_SetMemoryPriority(
VkDevice device,
VkDeviceMemory mem,
VkMemoryPriority priority)
@@ -773,7 +773,7 @@ VkResult VKAPI vkSetMemoryPriority(
return VK_SUCCESS;
}
VkResult VKAPI vkMapMemory(
VkResult anv_MapMemory(
VkDevice _device,
VkDeviceMemory _mem,
VkDeviceSize offset,
@@ -798,7 +798,7 @@ VkResult VKAPI vkMapMemory(
return VK_SUCCESS;
}
VkResult VKAPI vkUnmapMemory(
VkResult anv_UnmapMemory(
VkDevice _device,
VkDeviceMemory _mem)
{
@@ -809,7 +809,7 @@ VkResult VKAPI vkUnmapMemory(
return VK_SUCCESS;
}
VkResult VKAPI vkFlushMappedMemory(
VkResult anv_FlushMappedMemory(
VkDevice device,
VkDeviceMemory mem,
VkDeviceSize offset,
@@ -820,7 +820,7 @@ VkResult VKAPI vkFlushMappedMemory(
return VK_SUCCESS;
}
VkResult VKAPI vkPinSystemMemory(
VkResult anv_PinSystemMemory(
VkDevice device,
const void* pSysMem,
size_t memSize,
@@ -829,7 +829,7 @@ VkResult VKAPI vkPinSystemMemory(
return VK_SUCCESS;
}
VkResult VKAPI vkGetMultiDeviceCompatibility(
VkResult anv_GetMultiDeviceCompatibility(
VkPhysicalDevice physicalDevice0,
VkPhysicalDevice physicalDevice1,
VkPhysicalDeviceCompatibilityInfo* pInfo)
@@ -837,7 +837,7 @@ VkResult VKAPI vkGetMultiDeviceCompatibility(
return VK_UNSUPPORTED;
}
VkResult VKAPI vkOpenSharedMemory(
VkResult anv_OpenSharedMemory(
VkDevice device,
const VkMemoryOpenInfo* pOpenInfo,
VkDeviceMemory* pMem)
@@ -845,7 +845,7 @@ VkResult VKAPI vkOpenSharedMemory(
return VK_UNSUPPORTED;
}
VkResult VKAPI vkOpenSharedSemaphore(
VkResult anv_OpenSharedSemaphore(
VkDevice device,
const VkSemaphoreOpenInfo* pOpenInfo,
VkSemaphore* pSemaphore)
@@ -853,7 +853,7 @@ VkResult VKAPI vkOpenSharedSemaphore(
return VK_UNSUPPORTED;
}
VkResult VKAPI vkOpenPeerMemory(
VkResult anv_OpenPeerMemory(
VkDevice device,
const VkPeerMemoryOpenInfo* pOpenInfo,
VkDeviceMemory* pMem)
@@ -861,7 +861,7 @@ VkResult VKAPI vkOpenPeerMemory(
return VK_UNSUPPORTED;
}
VkResult VKAPI vkOpenPeerImage(
VkResult anv_OpenPeerImage(
VkDevice device,
const VkPeerImageOpenInfo* pOpenInfo,
VkImage* pImage,
@@ -939,7 +939,7 @@ static VkResult (*anv_object_destructors[])(struct anv_device *device,
[VK_OBJECT_TYPE_RENDER_PASS] = anv_free_destructor
};
VkResult VKAPI vkDestroyObject(
VkResult anv_DestroyObject(
VkDevice _device,
VkObjectType objType,
VkObject object)
@@ -988,7 +988,7 @@ fill_memory_requirements(
}
}
VkResult VKAPI vkGetObjectInfo(
VkResult anv_GetObjectInfo(
VkDevice _device,
VkObjectType objType,
VkObject object,
@@ -1013,7 +1013,7 @@ VkResult VKAPI vkGetObjectInfo(
}
VkResult VKAPI vkQueueBindObjectMemory(
VkResult anv_QueueBindObjectMemory(
VkQueue queue,
VkObjectType objType,
VkObject object,
@@ -1043,7 +1043,7 @@ VkResult VKAPI vkQueueBindObjectMemory(
return VK_SUCCESS;
}
VkResult VKAPI vkQueueBindObjectMemoryRange(
VkResult anv_QueueBindObjectMemoryRange(
VkQueue queue,
VkObjectType objType,
VkObject object,
@@ -1056,7 +1056,7 @@ VkResult VKAPI vkQueueBindObjectMemoryRange(
stub_return(VK_UNSUPPORTED);
}
VkResult vkQueueBindImageMemoryRange(
VkResult anv_QueueBindImageMemoryRange(
VkQueue queue,
VkImage image,
uint32_t allocationIdx,
@@ -1067,7 +1067,7 @@ VkResult vkQueueBindImageMemoryRange(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkCreateFence(
VkResult anv_CreateFence(
VkDevice device,
const VkFenceCreateInfo* pCreateInfo,
VkFence* pFence)
@@ -1075,7 +1075,7 @@ VkResult VKAPI vkCreateFence(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkResetFences(
VkResult anv_ResetFences(
VkDevice device,
uint32_t fenceCount,
VkFence* pFences)
@@ -1083,14 +1083,14 @@ VkResult VKAPI vkResetFences(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkGetFenceStatus(
VkResult anv_GetFenceStatus(
VkDevice device,
VkFence fence)
{
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkWaitForFences(
VkResult anv_WaitForFences(
VkDevice device,
uint32_t fenceCount,
const VkFence* pFences,
@@ -1102,7 +1102,7 @@ VkResult VKAPI vkWaitForFences(
// Queue semaphore functions
VkResult VKAPI vkCreateSemaphore(
VkResult anv_CreateSemaphore(
VkDevice device,
const VkSemaphoreCreateInfo* pCreateInfo,
VkSemaphore* pSemaphore)
@@ -1110,14 +1110,14 @@ VkResult VKAPI vkCreateSemaphore(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkQueueSignalSemaphore(
VkResult anv_QueueSignalSemaphore(
VkQueue queue,
VkSemaphore semaphore)
{
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkQueueWaitSemaphore(
VkResult anv_QueueWaitSemaphore(
VkQueue queue,
VkSemaphore semaphore)
{
@@ -1126,7 +1126,7 @@ VkResult VKAPI vkQueueWaitSemaphore(
// Event functions
VkResult VKAPI vkCreateEvent(
VkResult anv_CreateEvent(
VkDevice device,
const VkEventCreateInfo* pCreateInfo,
VkEvent* pEvent)
@@ -1134,21 +1134,21 @@ VkResult VKAPI vkCreateEvent(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkGetEventStatus(
VkResult anv_GetEventStatus(
VkDevice device,
VkEvent event)
{
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkSetEvent(
VkResult anv_SetEvent(
VkDevice device,
VkEvent event)
{
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkResetEvent(
VkResult anv_ResetEvent(
VkDevice device,
VkEvent event)
{
@@ -1163,7 +1163,7 @@ struct anv_query_pool {
struct anv_bo bo;
};
VkResult VKAPI vkCreateQueryPool(
VkResult anv_CreateQueryPool(
VkDevice _device,
const VkQueryPoolCreateInfo* pCreateInfo,
VkQueryPool* pQueryPool)
@@ -1194,7 +1194,7 @@ VkResult VKAPI vkCreateQueryPool(
return result;
}
VkResult VKAPI vkGetQueryPoolResults(
VkResult anv_GetQueryPoolResults(
VkDevice device,
VkQueryPool queryPool,
uint32_t startQuery,
@@ -1208,7 +1208,7 @@ VkResult VKAPI vkGetQueryPoolResults(
// Format capabilities
VkResult VKAPI vkGetFormatInfo(
VkResult anv_GetFormatInfo(
VkDevice device,
VkFormat format,
VkFormatInfoType infoType,
@@ -1220,7 +1220,7 @@ VkResult VKAPI vkGetFormatInfo(
// Buffer functions
VkResult VKAPI vkCreateBuffer(
VkResult anv_CreateBuffer(
VkDevice _device,
const VkBufferCreateInfo* pCreateInfo,
VkBuffer* pBuffer)
@@ -1246,7 +1246,7 @@ VkResult VKAPI vkCreateBuffer(
// Buffer view functions
VkResult VKAPI vkCreateBufferView(
VkResult anv_CreateBufferView(
VkDevice _device,
const VkBufferViewCreateInfo* pCreateInfo,
VkBufferView* pView)
@@ -1320,7 +1320,7 @@ VkResult VKAPI vkCreateBufferView(
// Sampler functions
VkResult VKAPI vkCreateSampler(
VkResult anv_CreateSampler(
VkDevice _device,
const VkSamplerCreateInfo* pCreateInfo,
VkSampler* pSampler)
@@ -1410,7 +1410,7 @@ VkResult VKAPI vkCreateSampler(
// Descriptor set functions
VkResult VKAPI vkCreateDescriptorSetLayout(
VkResult anv_CreateDescriptorSetLayout(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
VkDescriptorSetLayout* pSetLayout)
@@ -1537,21 +1537,21 @@ VkResult VKAPI vkCreateDescriptorSetLayout(
return VK_SUCCESS;
}
VkResult VKAPI vkBeginDescriptorPoolUpdate(
VkResult anv_BeginDescriptorPoolUpdate(
VkDevice device,
VkDescriptorUpdateMode updateMode)
{
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkEndDescriptorPoolUpdate(
VkResult anv_EndDescriptorPoolUpdate(
VkDevice device,
VkCmdBuffer cmd)
{
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkCreateDescriptorPool(
VkResult anv_CreateDescriptorPool(
VkDevice device,
VkDescriptorPoolUsage poolUsage,
uint32_t maxSets,
@@ -1561,14 +1561,14 @@ VkResult VKAPI vkCreateDescriptorPool(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkResetDescriptorPool(
VkResult anv_ResetDescriptorPool(
VkDevice device,
VkDescriptorPool descriptorPool)
{
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkAllocDescriptorSets(
VkResult anv_AllocDescriptorSets(
VkDevice _device,
VkDescriptorPool descriptorPool,
VkDescriptorSetUsage setUsage,
@@ -1600,7 +1600,7 @@ VkResult VKAPI vkAllocDescriptorSets(
return VK_UNSUPPORTED;
}
void VKAPI vkClearDescriptorSets(
void anv_ClearDescriptorSets(
VkDevice device,
VkDescriptorPool descriptorPool,
uint32_t count,
@@ -1609,7 +1609,7 @@ void VKAPI vkClearDescriptorSets(
stub();
}
void VKAPI vkUpdateDescriptors(
void anv_UpdateDescriptors(
VkDevice _device,
VkDescriptorSet descriptorSet,
uint32_t updateCount,
@@ -1692,7 +1692,7 @@ clamp_int64(int64_t x, int64_t min, int64_t max)
return max;
}
VkResult VKAPI vkCreateDynamicViewportState(
VkResult anv_CreateDynamicViewportState(
VkDevice _device,
const VkDynamicVpStateCreateInfo* pCreateInfo,
VkDynamicVpState* pState)
@@ -1777,7 +1777,7 @@ VkResult VKAPI vkCreateDynamicViewportState(
return VK_SUCCESS;
}
VkResult VKAPI vkCreateDynamicRasterState(
VkResult anv_CreateDynamicRasterState(
VkDevice _device,
const VkDynamicRsStateCreateInfo* pCreateInfo,
VkDynamicRsState* pState)
@@ -1813,7 +1813,7 @@ VkResult VKAPI vkCreateDynamicRasterState(
return VK_SUCCESS;
}
VkResult VKAPI vkCreateDynamicColorBlendState(
VkResult anv_CreateDynamicColorBlendState(
VkDevice _device,
const VkDynamicCbStateCreateInfo* pCreateInfo,
VkDynamicCbState* pState)
@@ -1833,7 +1833,7 @@ VkResult VKAPI vkCreateDynamicColorBlendState(
return VK_SUCCESS;
}
VkResult VKAPI vkCreateDynamicDepthStencilState(
VkResult anv_CreateDynamicDepthStencilState(
VkDevice device,
const VkDynamicDsStateCreateInfo* pCreateInfo,
VkDynamicDsState* pState)
@@ -1843,7 +1843,7 @@ VkResult VKAPI vkCreateDynamicDepthStencilState(
// Command buffer functions
VkResult VKAPI vkCreateCommandBuffer(
VkResult anv_CreateCommandBuffer(
VkDevice _device,
const VkCmdBufferCreateInfo* pCreateInfo,
VkCmdBuffer* pCmdBuffer)
@@ -1905,7 +1905,7 @@ VkResult VKAPI vkCreateCommandBuffer(
return result;
}
VkResult VKAPI vkBeginCommandBuffer(
VkResult anv_BeginCommandBuffer(
VkCmdBuffer cmdBuffer,
const VkCmdBufferBeginInfo* pBeginInfo)
{
@@ -2049,7 +2049,7 @@ anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
}
}
VkResult VKAPI vkEndCommandBuffer(
VkResult anv_EndCommandBuffer(
VkCmdBuffer cmdBuffer)
{
struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
@@ -2099,7 +2099,7 @@ VkResult VKAPI vkEndCommandBuffer(
return VK_SUCCESS;
}
VkResult VKAPI vkResetCommandBuffer(
VkResult anv_ResetCommandBuffer(
VkCmdBuffer cmdBuffer)
{
struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
@@ -2111,7 +2111,7 @@ VkResult VKAPI vkResetCommandBuffer(
// Command buffer building functions
void VKAPI vkCmdBindPipeline(
void anv_CmdBindPipeline(
VkCmdBuffer cmdBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
@@ -2122,7 +2122,7 @@ void VKAPI vkCmdBindPipeline(
cmd_buffer->dirty |= ANV_CMD_BUFFER_PIPELINE_DIRTY;
}
void VKAPI vkCmdBindDynamicStateObject(
void anv_CmdBindDynamicStateObject(
VkCmdBuffer cmdBuffer,
VkStateBindPoint stateBindPoint,
VkDynamicStateObject dynamicState)
@@ -2155,7 +2155,7 @@ void VKAPI vkCmdBindDynamicStateObject(
};
}
void VKAPI vkCmdBindDescriptorSets(
void anv_CmdBindDescriptorSets(
VkCmdBuffer cmdBuffer,
VkPipelineBindPoint pipelineBindPoint,
uint32_t firstSet,
@@ -2205,7 +2205,7 @@ void VKAPI vkCmdBindDescriptorSets(
cmd_buffer->dirty |= ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY;
}
void VKAPI vkCmdBindIndexBuffer(
void anv_CmdBindIndexBuffer(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
@@ -2227,7 +2227,7 @@ void VKAPI vkCmdBindIndexBuffer(
.BufferSize = buffer->size - offset);
}
void VKAPI vkCmdBindVertexBuffers(
void anv_CmdBindVertexBuffers(
VkCmdBuffer cmdBuffer,
uint32_t startBinding,
uint32_t bindingCount,
@@ -2375,7 +2375,7 @@ anv_cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer)
cmd_buffer->dirty = 0;
}
void VKAPI vkCmdDraw(
void anv_CmdDraw(
VkCmdBuffer cmdBuffer,
uint32_t firstVertex,
uint32_t vertexCount,
@@ -2395,7 +2395,7 @@ void VKAPI vkCmdDraw(
.BaseVertexLocation = 0);
}
void VKAPI vkCmdDrawIndexed(
void anv_CmdDrawIndexed(
VkCmdBuffer cmdBuffer,
uint32_t firstIndex,
uint32_t indexCount,
@@ -2441,7 +2441,7 @@ anv_batch_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
#define GEN7_3DPRIM_START_INSTANCE 0x243C
#define GEN7_3DPRIM_BASE_VERTEX 0x2440
void VKAPI vkCmdDrawIndirect(
void anv_CmdDrawIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
@@ -2466,7 +2466,7 @@ void VKAPI vkCmdDrawIndirect(
.VertexAccessType = SEQUENTIAL);
}
void VKAPI vkCmdDrawIndexedIndirect(
void anv_CmdDrawIndexedIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
@@ -2491,7 +2491,7 @@ void VKAPI vkCmdDrawIndexedIndirect(
.VertexAccessType = RANDOM);
}
void VKAPI vkCmdDispatch(
void anv_CmdDispatch(
VkCmdBuffer cmdBuffer,
uint32_t x,
uint32_t y,
@@ -2500,7 +2500,7 @@ void VKAPI vkCmdDispatch(
stub();
}
void VKAPI vkCmdDispatchIndirect(
void anv_CmdDispatchIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer buffer,
VkDeviceSize offset)
@@ -2508,7 +2508,7 @@ void VKAPI vkCmdDispatchIndirect(
stub();
}
void VKAPI vkCmdSetEvent(
void anv_CmdSetEvent(
VkCmdBuffer cmdBuffer,
VkEvent event,
VkPipeEvent pipeEvent)
@@ -2516,7 +2516,7 @@ void VKAPI vkCmdSetEvent(
stub();
}
void VKAPI vkCmdResetEvent(
void anv_CmdResetEvent(
VkCmdBuffer cmdBuffer,
VkEvent event,
VkPipeEvent pipeEvent)
@@ -2524,7 +2524,7 @@ void VKAPI vkCmdResetEvent(
stub();
}
void VKAPI vkCmdWaitEvents(
void anv_CmdWaitEvents(
VkCmdBuffer cmdBuffer,
VkWaitEvent waitEvent,
uint32_t eventCount,
@@ -2535,7 +2535,7 @@ void VKAPI vkCmdWaitEvents(
stub();
}
void VKAPI vkCmdPipelineBarrier(
void anv_CmdPipelineBarrier(
VkCmdBuffer cmdBuffer,
VkWaitEvent waitEvent,
uint32_t pipeEventCount,
@@ -2556,7 +2556,7 @@ anv_batch_emit_ps_depth_count(struct anv_batch *batch,
.Address = { bo, offset }); /* FIXME: This is only lower 32 bits */
}
void VKAPI vkCmdBeginQuery(
void anv_CmdBeginQuery(
VkCmdBuffer cmdBuffer,
VkQueryPool queryPool,
uint32_t slot,
@@ -2578,7 +2578,7 @@ void VKAPI vkCmdBeginQuery(
}
}
void VKAPI vkCmdEndQuery(
void anv_CmdEndQuery(
VkCmdBuffer cmdBuffer,
VkQueryPool queryPool,
uint32_t slot)
@@ -2599,7 +2599,7 @@ void VKAPI vkCmdEndQuery(
}
}
void VKAPI vkCmdResetQueryPool(
void anv_CmdResetQueryPool(
VkCmdBuffer cmdBuffer,
VkQueryPool queryPool,
uint32_t startQuery,
@@ -2610,7 +2610,7 @@ void VKAPI vkCmdResetQueryPool(
#define TIMESTAMP 0x44070
void VKAPI vkCmdWriteTimestamp(
void anv_CmdWriteTimestamp(
VkCmdBuffer cmdBuffer,
VkTimestampType timestampType,
VkBuffer destBuffer,
@@ -2640,7 +2640,7 @@ void VKAPI vkCmdWriteTimestamp(
}
}
void VKAPI vkCmdCopyQueryPoolResults(
void anv_CmdCopyQueryPoolResults(
VkCmdBuffer cmdBuffer,
VkQueryPool queryPool,
uint32_t startQuery,
@@ -2653,7 +2653,7 @@ void VKAPI vkCmdCopyQueryPoolResults(
stub();
}
void VKAPI vkCmdInitAtomicCounters(
void anv_CmdInitAtomicCounters(
VkCmdBuffer cmdBuffer,
VkPipelineBindPoint pipelineBindPoint,
uint32_t startCounter,
@@ -2663,7 +2663,7 @@ void VKAPI vkCmdInitAtomicCounters(
stub();
}
void VKAPI vkCmdLoadAtomicCounters(
void anv_CmdLoadAtomicCounters(
VkCmdBuffer cmdBuffer,
VkPipelineBindPoint pipelineBindPoint,
uint32_t startCounter,
@@ -2674,7 +2674,7 @@ void VKAPI vkCmdLoadAtomicCounters(
stub();
}
void VKAPI vkCmdSaveAtomicCounters(
void anv_CmdSaveAtomicCounters(
VkCmdBuffer cmdBuffer,
VkPipelineBindPoint pipelineBindPoint,
uint32_t startCounter,
@@ -2685,7 +2685,7 @@ void VKAPI vkCmdSaveAtomicCounters(
stub();
}
VkResult VKAPI vkCreateFramebuffer(
VkResult anv_CreateFramebuffer(
VkDevice _device,
const VkFramebufferCreateInfo* pCreateInfo,
VkFramebuffer* pFramebuffer)
@@ -2742,7 +2742,7 @@ VkResult VKAPI vkCreateFramebuffer(
return VK_SUCCESS;
}
VkResult VKAPI vkCreateRenderPass(
VkResult anv_CreateRenderPass(
VkDevice _device,
const VkRenderPassCreateInfo* pCreateInfo,
VkRenderPass* pRenderPass)
@@ -2793,7 +2793,7 @@ anv_cmd_buffer_fill_render_targets(struct anv_cmd_buffer *cmd_buffer)
cmd_buffer->dirty |= ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY;
}
void VKAPI vkCmdBeginRenderPass(
void anv_CmdBeginRenderPass(
VkCmdBuffer cmdBuffer,
const VkRenderPassBegin* pRenderPassBegin)
{
@@ -2819,7 +2819,7 @@ void VKAPI vkCmdBeginRenderPass(
anv_cmd_buffer_clear(cmd_buffer, pass);
}
void VKAPI vkCmdEndRenderPass(
void anv_CmdEndRenderPass(
VkCmdBuffer cmdBuffer,
VkRenderPass renderPass)
{

View File

@@ -224,7 +224,7 @@ static const struct anv_tile_mode_info {
[WMAJOR] = { 128, 32 }
};
VkResult VKAPI vkCreateImage(
VkResult anv_CreateImage(
VkDevice _device,
const VkImageCreateInfo* pCreateInfo,
VkImage* pImage)
@@ -279,7 +279,7 @@ VkResult VKAPI vkCreateImage(
return VK_SUCCESS;
}
VkResult VKAPI vkGetImageSubresourceInfo(
VkResult anv_GetImageSubresourceInfo(
VkDevice device,
VkImage image,
const VkImageSubresource* pSubresource,
@@ -342,7 +342,7 @@ create_surface_state(struct anv_device *device,
return state;
}
VkResult VKAPI vkCreateImageView(
VkResult anv_CreateImageView(
VkDevice _device,
const VkImageViewCreateInfo* pCreateInfo,
VkImageView* pView)
@@ -373,7 +373,7 @@ VkResult VKAPI vkCreateImageView(
return VK_SUCCESS;
}
VkResult VKAPI vkCreateColorAttachmentView(
VkResult anv_CreateColorAttachmentView(
VkDevice _device,
const VkColorAttachmentViewCreateInfo* pCreateInfo,
VkColorAttachmentView* pView)
@@ -402,7 +402,7 @@ VkResult VKAPI vkCreateColorAttachmentView(
return VK_SUCCESS;
}
VkResult VKAPI vkCreateDepthStencilView(
VkResult anv_CreateDepthStencilView(
VkDevice device,
const VkDepthStencilViewCreateInfo* pCreateInfo,
VkDepthStencilView* pView)

View File

@@ -29,9 +29,7 @@
#include "private.h"
#include <vulkan/vulkan_intel.h>
VkResult VKAPI vkCreateDmaBufImageINTEL(
VkResult anv_CreateDmaBufImageINTEL(
VkDevice _device,
const VkDmaBufImageCreateInfo* pCreateInfo,
VkDeviceMemory* pMem,

View File

@@ -628,7 +628,7 @@ meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
anv_cmd_buffer_restore(cmd_buffer, saved_state);
}
void VKAPI vkCmdCopyBuffer(
void anv_CmdCopyBuffer(
VkCmdBuffer cmdBuffer,
VkBuffer srcBuffer,
VkBuffer destBuffer,
@@ -638,7 +638,7 @@ void VKAPI vkCmdCopyBuffer(
stub();
}
void VKAPI vkCmdCopyImage(
void anv_CmdCopyImage(
VkCmdBuffer cmdBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
@@ -650,7 +650,7 @@ void VKAPI vkCmdCopyImage(
stub();
}
void VKAPI vkCmdBlitImage(
void anv_CmdBlitImage(
VkCmdBuffer cmdBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
@@ -662,7 +662,7 @@ void VKAPI vkCmdBlitImage(
stub();
}
void VKAPI vkCmdCopyBufferToImage(
void anv_CmdCopyBufferToImage(
VkCmdBuffer cmdBuffer,
VkBuffer srcBuffer,
VkImage destImage,
@@ -673,7 +673,7 @@ void VKAPI vkCmdCopyBufferToImage(
stub();
}
void VKAPI vkCmdCopyImageToBuffer(
void anv_CmdCopyImageToBuffer(
VkCmdBuffer cmdBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
@@ -764,7 +764,7 @@ void VKAPI vkCmdCopyImageToBuffer(
meta_finish_blit(cmd_buffer, &saved_state);
}
void VKAPI vkCmdCloneImageData(
void anv_CmdCloneImageData(
VkCmdBuffer cmdBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
@@ -774,7 +774,7 @@ void VKAPI vkCmdCloneImageData(
stub();
}
void VKAPI vkCmdUpdateBuffer(
void anv_CmdUpdateBuffer(
VkCmdBuffer cmdBuffer,
VkBuffer destBuffer,
VkDeviceSize destOffset,
@@ -784,7 +784,7 @@ void VKAPI vkCmdUpdateBuffer(
stub();
}
void VKAPI vkCmdFillBuffer(
void anv_CmdFillBuffer(
VkCmdBuffer cmdBuffer,
VkBuffer destBuffer,
VkDeviceSize destOffset,
@@ -794,7 +794,7 @@ void VKAPI vkCmdFillBuffer(
stub();
}
void VKAPI vkCmdClearColorImage(
void anv_CmdClearColorImage(
VkCmdBuffer cmdBuffer,
VkImage image,
VkImageLayout imageLayout,
@@ -805,7 +805,7 @@ void VKAPI vkCmdClearColorImage(
stub();
}
void VKAPI vkCmdClearDepthStencil(
void anv_CmdClearDepthStencil(
VkCmdBuffer cmdBuffer,
VkImage image,
VkImageLayout imageLayout,
@@ -817,7 +817,7 @@ void VKAPI vkCmdClearDepthStencil(
stub();
}
void VKAPI vkCmdResolveImage(
void anv_CmdResolveImage(
VkCmdBuffer cmdBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,

View File

@@ -31,7 +31,7 @@
// Shader functions
VkResult VKAPI vkCreateShader(
VkResult anv_CreateShader(
VkDevice _device,
const VkShaderCreateInfo* pCreateInfo,
VkShader* pShader)
@@ -214,7 +214,7 @@ emit_rs_state(struct anv_pipeline *pipeline, VkPipelineRsStateCreateInfo *info,
}
VkResult VKAPI vkCreateGraphicsPipeline(
VkResult anv_CreateGraphicsPipeline(
VkDevice device,
const VkGraphicsPipelineCreateInfo* pCreateInfo,
VkPipeline* pPipeline)
@@ -506,7 +506,7 @@ anv_pipeline_destroy(struct anv_pipeline *pipeline)
return VK_SUCCESS;
}
VkResult VKAPI vkCreateGraphicsPipelineDerivative(
VkResult anv_CreateGraphicsPipelineDerivative(
VkDevice device,
const VkGraphicsPipelineCreateInfo* pCreateInfo,
VkPipeline basePipeline,
@@ -515,7 +515,7 @@ VkResult VKAPI vkCreateGraphicsPipelineDerivative(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkCreateComputePipeline(
VkResult anv_CreateComputePipeline(
VkDevice device,
const VkComputePipelineCreateInfo* pCreateInfo,
VkPipeline* pPipeline)
@@ -523,7 +523,7 @@ VkResult VKAPI vkCreateComputePipeline(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkStorePipeline(
VkResult anv_StorePipeline(
VkDevice device,
VkPipeline pipeline,
size_t* pDataSize,
@@ -532,7 +532,7 @@ VkResult VKAPI vkStorePipeline(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkLoadPipeline(
VkResult anv_LoadPipeline(
VkDevice device,
size_t dataSize,
const void* pData,
@@ -541,7 +541,7 @@ VkResult VKAPI vkLoadPipeline(
stub_return(VK_UNSUPPORTED);
}
VkResult VKAPI vkLoadPipelineDerivative(
VkResult anv_LoadPipelineDerivative(
VkDevice device,
size_t dataSize,
const void* pData,
@@ -553,7 +553,7 @@ VkResult VKAPI vkLoadPipelineDerivative(
// Pipeline layout functions
VkResult VKAPI vkCreatePipelineLayout(
VkResult anv_CreatePipelineLayout(
VkDevice _device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
VkPipelineLayout* pPipelineLayout)

View File

@@ -35,9 +35,9 @@
#define VK_PROTOTYPES
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_intel.h>
#undef VKAPI
#define VKAPI __attribute__ ((visibility ("default")))
#include "entrypoints.h"
#include "brw_context.h"
@@ -689,6 +689,9 @@ anv_cmd_buffer_clear(struct anv_cmd_buffer *cmd_buffer,
void
anv_cmd_buffer_fill_render_targets(struct anv_cmd_buffer *cmd_buffer);
void *
anv_lookup_entrypoint(const char *name);
#ifdef __cplusplus
}
#endif

266
src/vulkan/vk_gen.py Normal file
View File

@@ -0,0 +1,266 @@
# coding=utf-8
#
# Copyright © 2015 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
import fileinput, re, sys
# Each function typedef in the vulkan.h header is all on one line and matches
# this regepx. We hope that won't change.
p = re.compile('typedef ([^ ]*) *\(VKAPI \*PFN_vk([^(]*)\)(.*);')
entrypoints = []
# We generate a static hash table for entry point lookup
# (vkGetProcAddress). We use a linear congruential generator for our hash
# function and a power-of-two size table. The prime numbers are determined
# experimentally.
none = 0xffff
hash_size = 256
u32_mask = 2**32 - 1
hash_mask = hash_size - 1
prime_factor = 5024183
prime_step = 19
def hash(name):
h = 0;
for c in name:
h = (h * prime_factor + ord(c)) & u32_mask
return h
opt_header = False
opt_code = False
if (sys.argv[1] == "header"):
opt_header = True
sys.argv.pop()
elif (sys.argv[1] == "code"):
opt_code = True
sys.argv.pop()
# Parse the entry points in the header
i = 0
for line in fileinput.input():
m = p.match(line)
if (m):
fullname = "vk" + m.group(2)
h = hash(fullname)
entrypoints.append((m.group(1), m.group(2), m.group(3), i, h))
i = i + 1
# For outputting entrypoints.h we generate a anv_EntryPoint() prototype
# per entry point.
if opt_header:
for type, name, args, num, h in entrypoints:
print "%s anv_%s%s;" % (type, name, args)
print "%s anv_validate_%s%s;" % (type, name, args)
exit()
print """/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/* This file generated from vk_gen.py, don't edit directly. */
#include "private.h"
struct anv_entrypoint {
uint32_t name;
uint32_t hash;
void *function;
void *validate;
};
/* We use a big string constant to avoid lots of reloctions from the entry
* point table to lots of little strings. The entries in the entry point table
* store the index into this big string.
*/
static const char strings[] ="""
offsets = []
i = 0;
for type, name, args, num, h in entrypoints:
print " \"vk%s\\0\"" % name
offsets.append(i)
i += 2 + len(name) + 1
print """ ;
/* Weak aliases for all potential validate functions. These will resolve to
* NULL if they're not defined, which lets the resolve_entrypoint() function
* either pick a validate wrapper if available or just plug in the actual
* entry point.
*/
"""
for type, name, args, num, h in entrypoints:
print "%s anv_validate_%s%s __attribute__ ((weak));" % (type, name, args)
# Now generate the table of all entry points and their validation functions
print "\nstatic const struct anv_entrypoint entrypoints[] = {"
for type, name, args, num, h in entrypoints:
print " { %5d, 0x%08x, anv_%s, anv_validate_%s }," % (offsets[num], h, name, name)
print "};\n"
print """
#ifdef DEBUG
static bool enable_validate = true;
#else
static bool enable_validate = false;
#endif
/* We can't use symbols that need resolving (like, oh, getenv) in the resolve
* function. This means that we have to determine whether or not to use the
* validation layer sometime before that. The constructor function attribute asks
* the dynamic linker to invoke determine_validate() at dlopen() time which
* works.
*/
static void __attribute__ ((constructor))
determine_validate(void)
{
const char *s = getenv("ANV_VALIDATE");
if (s)
enable_validate = atoi(s);
}
static void * __attribute__ ((noinline))
resolve_entrypoint(uint32_t index)
{
if (enable_validate && entrypoints[index].validate)
return entrypoints[index].validate;
return entrypoints[index].function;
}
"""
# Now output ifuncs and their resolve helpers for all entry points. The
# resolve helper calls resolve_entrypoint() with the entry point index, which
# lets the resolver look it up in the table.
for type, name, args, num, h in entrypoints:
print "static void *resolve_%s(void) { return resolve_entrypoint(%d); }" % (name, num)
print "%s vk%s%s\n __attribute__ ((ifunc (\"resolve_%s\"), visibility (\"default\")));\n" % (type, name, args, name)
# Now generate the hash table used for entry point look up. This is a
# uint16_t table of entry point indices. We use 0xffff to indicate an entry
# in the hash table is empty.
map = [none for f in xrange(hash_size)]
collisions = [0 for f in xrange(10)]
for type, name, args, num, h in entrypoints:
level = 0
while map[h & hash_mask] != none:
h = h + prime_step
level = level + 1
if level > 9:
collisions[9] += 1
else:
collisions[level] += 1
map[h & hash_mask] = num
print "/* Hash table stats:"
print " * size %d entries" % hash_size
print " * collisions entries"
for i in xrange(10):
if (i == 9):
plus = "+"
else:
plus = " "
print " * %2d%s %4d" % (i, plus, collisions[i])
print " */\n"
print "#define none 0x%04x\n" % none
print "static const uint16_t map[] = {"
for i in xrange(0, hash_size, 8):
print " ",
for j in xrange(i, i + 8):
if map[j] & 0xffff == 0xffff:
print " none,",
else:
print "0x%04x," % (map[j] & 0xffff),
print
print "};"
# Finally we generate the hash table lookup function. The hash function and
# linear probing algorithm matches the hash table generated above.
print """
void *
anv_lookup_entrypoint(const char *name)
{
static const uint32_t prime_factor = %d;
static const uint32_t prime_step = %d;
const struct anv_entrypoint *e;
uint32_t hash, h, i;
const char *p;
hash = 0;
for (p = name; *p; p++)
hash = hash * prime_factor + *p;
h = hash;
do {
i = map[h & %d];
if (i == none)
return NULL;
e = &entrypoints[i];
h += prime_step;
} while (e->hash != hash);
if (strcmp(name, strings + e->name) != 0)
return NULL;
return resolve_entrypoint(i);
}
""" % (prime_factor, prime_step, hash_mask)