gallivm: Efficient implementation of sin/cos.

Based on Julien Pommier's SSE and SSE2 algorithms.

Signed-off-by: José Fonseca <jfonseca@vmware.com>
This commit is contained in:
Qicheng Christopher Li
2010-05-24 13:41:17 +01:00
committed by José Fonseca
parent 9b775c1e58
commit 3c929e5544

View File

@@ -59,6 +59,7 @@
#include "lp_bld_pack.h"
#include "lp_bld_debug.h"
#include "lp_bld_arit.h"
#include "lp_bld_printf.h"
/**
@@ -1171,132 +1172,455 @@ lp_build_rsqrt(struct lp_build_context *bld,
}
#ifdef PIPE_OS_WINDOWS
/*
* XXX: X86 backend translates llvm.cos.v4f32 to 4 calls to CRT's cosf()
* which is neither efficient nor does the CRT linkage work on Windows
* causing segmentation fault.
*
* XXX: With LLVM 2.7 both schemes cause an assertion failure.
*/
static LLVMValueRef
lp_build_sincos(struct lp_build_context *bld,
const char *name,
float (*func)(float),
LLVMValueRef a)
static inline LLVMValueRef
lp_build_const_v4si(unsigned long value)
{
LLVMModuleRef module =
LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(bld->builder)));
LLVMValueRef function;
LLVMValueRef res;
unsigned i;
assert(bld->type.floating);
assert(bld->type.width == 32);
function = LLVMGetNamedFunction(module, name);
if (!function) {
LLVMTypeRef ret_type;
LLVMTypeRef arg_types[1];
LLVMTypeRef function_type;
ret_type = LLVMFloatType();
arg_types[0] = LLVMFloatType();
function_type = LLVMFunctionType(ret_type, arg_types, Elements(arg_types), 0);
function = LLVMAddFunction(module, name, function_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMPrivateLinkage);
assert(LLVMIsDeclaration(function));
LLVMAddGlobalMapping(lp_build_engine, function, func);
}
res = bld->undef;
for (i = 0; i < bld->type.length; ++i) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
LLVMValueRef args[1];
LLVMValueRef tmp;
args[0] = LLVMBuildExtractElement(bld->builder, a, index, "");
tmp = LLVMBuildCall(bld->builder, function, args, Elements(args), "");
res = LLVMBuildInsertElement(bld->builder, res, tmp, index, "");
}
return res;
LLVMValueRef element = LLVMConstInt(LLVMInt32Type(), value, 0);
LLVMValueRef elements[4] = { element, element, element, element };
return LLVMConstVector(elements, 4);
}
static float c_cosf( float f )
static inline LLVMValueRef
lp_build_const_v4sf(float value)
{
return (float) cos( (double) f );
}
static float c_sinf( float f )
{
return (float) sin( (double) f );
}
LLVMValueRef
lp_build_cos(struct lp_build_context *bld,
LLVMValueRef a)
{
return lp_build_sincos(bld, "cosf", &c_cosf, a);
}
LLVMValueRef
lp_build_sin(struct lp_build_context *bld,
LLVMValueRef a)
{
return lp_build_sincos(bld, "sinf", &c_sinf, a);
}
#else /* !PIPE_OS_WINDOWS */
/**
* Generate cos(a)
*/
LLVMValueRef
lp_build_cos(struct lp_build_context *bld,
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
char intrinsic[32];
/* TODO: optimize the constant case */
assert(type.floating);
util_snprintf(intrinsic, sizeof intrinsic, "llvm.cos.v%uf%u", type.length, type.width);
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
LLVMValueRef element = LLVMConstReal(LLVMFloatType(), value);
LLVMValueRef elements[4] = { element, element, element, element };
return LLVMConstVector(elements, 4);
}
/**
* Generate sin(a)
* Generate sin(a) using SSE2
*/
LLVMValueRef
lp_build_sin(struct lp_build_context *bld,
LLVMValueRef a)
LLVMValueRef a)
{
const struct lp_type type = bld->type;
LLVMTypeRef vec_type = lp_build_vec_type(type);
char intrinsic[32];
struct lp_type int_type = lp_int_type(bld->type);
LLVMBuilderRef b = bld->builder;
LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatType(), 4);
LLVMTypeRef v4si = LLVMVectorType(LLVMInt32Type(), 4);
/* TODO: optimize the constant case */
/*
* take the absolute value,
* x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
*/
assert(type.floating);
util_snprintf(intrinsic, sizeof intrinsic, "llvm.sin.v%uf%u", type.length, type.width);
LLVMValueRef inv_sig_mask = lp_build_const_v4si(~0x80000000);
LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, v4si, "a_v4si");
return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, v4sf, "x_abs");
/*
* extract the sign bit (upper one)
* sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
*/
LLVMValueRef sig_mask = lp_build_const_v4si(0x80000000);
LLVMValueRef sign_bit_i = LLVMBuildAnd(b, a_v4si, sig_mask, "sign_bit_i");
/*
* scale by 4/Pi
* y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
*/
LLVMValueRef FOPi = lp_build_const_v4sf(1.27323954473516);
LLVMValueRef scale_y = LLVMBuildMul(b, x_abs, FOPi, "scale_y");
/*
* store the integer part of y in mm0
* emm2 = _mm_cvttps_epi32(y);
*/
LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, v4si, "emm2_i");
/*
* j=(j+1) & (~1) (see the cephes sources)
* emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
*/
LLVMValueRef all_one = lp_build_const_v4si(1);
LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
/*
* emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
*/
LLVMValueRef inv_one = lp_build_const_v4si(~1);
LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
/*
* y = _mm_cvtepi32_ps(emm2);
*/
LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, v4sf, "y_2");
/* get the swap sign flag
* emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
*/
LLVMValueRef pi32_4 = lp_build_const_v4si(4);
LLVMValueRef emm0_and = LLVMBuildAnd(b, emm2_add, pi32_4, "emm0_and");
/*
* emm2 = _mm_slli_epi32(emm0, 29);
*/
LLVMValueRef const_29 = lp_build_const_v4si(29);
LLVMValueRef swap_sign_bit = LLVMBuildShl(b, emm0_and, const_29, "swap_sign_bit");
/*
* get the polynom selection mask
* there is one polynom for 0 <= x <= Pi/4
* and another one for Pi/4<x<=Pi/2
* Both branches will be computed.
*
* emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
* emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
*/
LLVMValueRef pi32_2 = lp_build_const_v4si(2);
LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_and, pi32_2, "emm2_3");
LLVMValueRef poly_mask = lp_build_compare(b, int_type, PIPE_FUNC_EQUAL,
emm2_3, lp_build_const_v4si(0));
/*
* sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
*/
LLVMValueRef sign_bit_1 = LLVMBuildXor(b, sign_bit_i, swap_sign_bit, "sign_bit");
/*
* _PS_CONST(minus_cephes_DP1, -0.78515625);
* _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
* _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
*/
LLVMValueRef DP1 = lp_build_const_v4sf(-0.78515625);
LLVMValueRef DP2 = lp_build_const_v4sf(-2.4187564849853515625e-4);
LLVMValueRef DP3 = lp_build_const_v4sf(-3.77489497744594108e-8);
/*
* The magic pass: "Extended precision modular arithmetic"
* x = ((x - y * DP1) - y * DP2) - y * DP3;
* xmm1 = _mm_mul_ps(y, xmm1);
* xmm2 = _mm_mul_ps(y, xmm2);
* xmm3 = _mm_mul_ps(y, xmm3);
*/
LLVMValueRef xmm1 = LLVMBuildMul(b, y_2, DP1, "xmm1");
LLVMValueRef xmm2 = LLVMBuildMul(b, y_2, DP2, "xmm2");
LLVMValueRef xmm3 = LLVMBuildMul(b, y_2, DP3, "xmm3");
/*
* x = _mm_add_ps(x, xmm1);
* x = _mm_add_ps(x, xmm2);
* x = _mm_add_ps(x, xmm3);
*/
LLVMValueRef x_1 = LLVMBuildAdd(b, x_abs, xmm1, "x_1");
LLVMValueRef x_2 = LLVMBuildAdd(b, x_1, xmm2, "x_2");
LLVMValueRef x_3 = LLVMBuildAdd(b, x_2, xmm3, "x_3");
/*
* Evaluate the first polynom (0 <= x <= Pi/4)
*
* z = _mm_mul_ps(x,x);
*/
LLVMValueRef z = LLVMBuildMul(b, x_3, x_3, "z");
/*
* _PS_CONST(coscof_p0, 2.443315711809948E-005);
* _PS_CONST(coscof_p1, -1.388731625493765E-003);
* _PS_CONST(coscof_p2, 4.166664568298827E-002);
*/
LLVMValueRef coscof_p0 = lp_build_const_v4sf(2.443315711809948E-005);
LLVMValueRef coscof_p1 = lp_build_const_v4sf(-1.388731625493765E-003);
LLVMValueRef coscof_p2 = lp_build_const_v4sf(4.166664568298827E-002);
/*
* y = *(v4sf*)_ps_coscof_p0;
* y = _mm_mul_ps(y, z);
*/
LLVMValueRef y_3 = LLVMBuildMul(b, z, coscof_p0, "y_3");
LLVMValueRef y_4 = LLVMBuildAdd(b, y_3, coscof_p1, "y_4");
LLVMValueRef y_5 = LLVMBuildMul(b, y_4, z, "y_5");
LLVMValueRef y_6 = LLVMBuildAdd(b, y_5, coscof_p2, "y_6");
LLVMValueRef y_7 = LLVMBuildMul(b, y_6, z, "y_7");
LLVMValueRef y_8 = LLVMBuildMul(b, y_7, z, "y_8");
/*
* tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
* y = _mm_sub_ps(y, tmp);
* y = _mm_add_ps(y, *(v4sf*)_ps_1);
*/
LLVMValueRef half = lp_build_const_v4sf(0.5);
LLVMValueRef tmp = LLVMBuildMul(b, z, half, "tmp");
LLVMValueRef y_9 = LLVMBuildSub(b, y_8, tmp, "y_8");
LLVMValueRef one = lp_build_const_v4sf(1.0);
LLVMValueRef y_10 = LLVMBuildAdd(b, y_9, one, "y_9");
/*
* _PS_CONST(sincof_p0, -1.9515295891E-4);
* _PS_CONST(sincof_p1, 8.3321608736E-3);
* _PS_CONST(sincof_p2, -1.6666654611E-1);
*/
LLVMValueRef sincof_p0 = lp_build_const_v4sf(-1.9515295891E-4);
LLVMValueRef sincof_p1 = lp_build_const_v4sf(8.3321608736E-3);
LLVMValueRef sincof_p2 = lp_build_const_v4sf(-1.6666654611E-1);
/*
* Evaluate the second polynom (Pi/4 <= x <= 0)
*
* y2 = *(v4sf*)_ps_sincof_p0;
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_mul_ps(y2, x);
* y2 = _mm_add_ps(y2, x);
*/
LLVMValueRef y2_3 = LLVMBuildMul(b, z, sincof_p0, "y2_3");
LLVMValueRef y2_4 = LLVMBuildAdd(b, y2_3, sincof_p1, "y2_4");
LLVMValueRef y2_5 = LLVMBuildMul(b, y2_4, z, "y2_5");
LLVMValueRef y2_6 = LLVMBuildAdd(b, y2_5, sincof_p2, "y2_6");
LLVMValueRef y2_7 = LLVMBuildMul(b, y2_6, z, "y2_7");
LLVMValueRef y2_8 = LLVMBuildMul(b, y2_7, x_3, "y2_8");
LLVMValueRef y2_9 = LLVMBuildAdd(b, y2_8, x_3, "y2_9");
/*
* select the correct result from the two polynoms
* xmm3 = poly_mask;
* y2 = _mm_and_ps(xmm3, y2); //, xmm3);
* y = _mm_andnot_ps(xmm3, y);
* y = _mm_add_ps(y,y2);
*/
LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, v4si, "y2_i");
LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, v4si, "y_i");
LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
LLVMValueRef inv = lp_build_const_v4si(~0);
LLVMValueRef poly_mask_inv = LLVMBuildXor(b, poly_mask, inv, "poly_mask_inv");
LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
LLVMValueRef y_combine = LLVMBuildAdd(b, y_and, y2_and, "y_combine");
/*
* update the sign
* y = _mm_xor_ps(y, sign_bit);
*/
LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit_1, "y_sin");
LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, v4sf, "y_result");
return y_result;
}
#endif /* !PIPE_OS_WINDOWS */
/**
* Generate cos(a) using SSE2
*/
LLVMValueRef
lp_build_cos(struct lp_build_context *bld,
LLVMValueRef a)
{
struct lp_type int_type = lp_int_type(bld->type);
LLVMBuilderRef b = bld->builder;
LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatType(), 4);
LLVMTypeRef v4si = LLVMVectorType(LLVMInt32Type(), 4);
/*
* take the absolute value,
* x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
*/
LLVMValueRef inv_sig_mask = lp_build_const_v4si(~0x80000000);
LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, v4si, "a_v4si");
LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, v4sf, "x_abs");
/*
* scale by 4/Pi
* y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
*/
LLVMValueRef FOPi = lp_build_const_v4sf(1.27323954473516);
LLVMValueRef scale_y = LLVMBuildMul(b, x_abs, FOPi, "scale_y");
/*
* store the integer part of y in mm0
* emm2 = _mm_cvttps_epi32(y);
*/
LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, v4si, "emm2_i");
/*
* j=(j+1) & (~1) (see the cephes sources)
* emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
*/
LLVMValueRef all_one = lp_build_const_v4si(1);
LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
/*
* emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
*/
LLVMValueRef inv_one = lp_build_const_v4si(~1);
LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
/*
* y = _mm_cvtepi32_ps(emm2);
*/
LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, v4sf, "y_2");
/*
* emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
*/
LLVMValueRef const_2 = lp_build_const_v4si(2);
LLVMValueRef emm2_2 = LLVMBuildSub(b, emm2_and, const_2, "emm2_2");
/* get the swap sign flag
* emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
*/
LLVMValueRef inv = lp_build_const_v4si(~0);
LLVMValueRef emm0_not = LLVMBuildXor(b, emm2_2, inv, "emm0_not");
LLVMValueRef pi32_4 = lp_build_const_v4si(4);
LLVMValueRef emm0_and = LLVMBuildAnd(b, emm0_not, pi32_4, "emm0_and");
/*
* emm2 = _mm_slli_epi32(emm0, 29);
*/
LLVMValueRef const_29 = lp_build_const_v4si(29);
LLVMValueRef sign_bit = LLVMBuildShl(b, emm0_and, const_29, "sign_bit");
/*
* get the polynom selection mask
* there is one polynom for 0 <= x <= Pi/4
* and another one for Pi/4<x<=Pi/2
* Both branches will be computed.
*
* emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
* emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
*/
LLVMValueRef pi32_2 = lp_build_const_v4si(2);
LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_2, pi32_2, "emm2_3");
LLVMValueRef poly_mask = lp_build_compare(b, int_type, PIPE_FUNC_EQUAL,
emm2_3, lp_build_const_v4si(0));
/*
* _PS_CONST(minus_cephes_DP1, -0.78515625);
* _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
* _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
*/
LLVMValueRef DP1 = lp_build_const_v4sf(-0.78515625);
LLVMValueRef DP2 = lp_build_const_v4sf(-2.4187564849853515625e-4);
LLVMValueRef DP3 = lp_build_const_v4sf(-3.77489497744594108e-8);
/*
* The magic pass: "Extended precision modular arithmetic"
* x = ((x - y * DP1) - y * DP2) - y * DP3;
* xmm1 = _mm_mul_ps(y, xmm1);
* xmm2 = _mm_mul_ps(y, xmm2);
* xmm3 = _mm_mul_ps(y, xmm3);
*/
LLVMValueRef xmm1 = LLVMBuildMul(b, y_2, DP1, "xmm1");
LLVMValueRef xmm2 = LLVMBuildMul(b, y_2, DP2, "xmm2");
LLVMValueRef xmm3 = LLVMBuildMul(b, y_2, DP3, "xmm3");
/*
* x = _mm_add_ps(x, xmm1);
* x = _mm_add_ps(x, xmm2);
* x = _mm_add_ps(x, xmm3);
*/
LLVMValueRef x_1 = LLVMBuildAdd(b, x_abs, xmm1, "x_1");
LLVMValueRef x_2 = LLVMBuildAdd(b, x_1, xmm2, "x_2");
LLVMValueRef x_3 = LLVMBuildAdd(b, x_2, xmm3, "x_3");
/*
* Evaluate the first polynom (0 <= x <= Pi/4)
*
* z = _mm_mul_ps(x,x);
*/
LLVMValueRef z = LLVMBuildMul(b, x_3, x_3, "z");
/*
* _PS_CONST(coscof_p0, 2.443315711809948E-005);
* _PS_CONST(coscof_p1, -1.388731625493765E-003);
* _PS_CONST(coscof_p2, 4.166664568298827E-002);
*/
LLVMValueRef coscof_p0 = lp_build_const_v4sf(2.443315711809948E-005);
LLVMValueRef coscof_p1 = lp_build_const_v4sf(-1.388731625493765E-003);
LLVMValueRef coscof_p2 = lp_build_const_v4sf(4.166664568298827E-002);
/*
* y = *(v4sf*)_ps_coscof_p0;
* y = _mm_mul_ps(y, z);
*/
LLVMValueRef y_3 = LLVMBuildMul(b, z, coscof_p0, "y_3");
LLVMValueRef y_4 = LLVMBuildAdd(b, y_3, coscof_p1, "y_4");
LLVMValueRef y_5 = LLVMBuildMul(b, y_4, z, "y_5");
LLVMValueRef y_6 = LLVMBuildAdd(b, y_5, coscof_p2, "y_6");
LLVMValueRef y_7 = LLVMBuildMul(b, y_6, z, "y_7");
LLVMValueRef y_8 = LLVMBuildMul(b, y_7, z, "y_8");
/*
* tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
* y = _mm_sub_ps(y, tmp);
* y = _mm_add_ps(y, *(v4sf*)_ps_1);
*/
LLVMValueRef half = lp_build_const_v4sf(0.5);
LLVMValueRef tmp = LLVMBuildMul(b, z, half, "tmp");
LLVMValueRef y_9 = LLVMBuildSub(b, y_8, tmp, "y_8");
LLVMValueRef one = lp_build_const_v4sf(1.0);
LLVMValueRef y_10 = LLVMBuildAdd(b, y_9, one, "y_9");
/*
* _PS_CONST(sincof_p0, -1.9515295891E-4);
* _PS_CONST(sincof_p1, 8.3321608736E-3);
* _PS_CONST(sincof_p2, -1.6666654611E-1);
*/
LLVMValueRef sincof_p0 = lp_build_const_v4sf(-1.9515295891E-4);
LLVMValueRef sincof_p1 = lp_build_const_v4sf(8.3321608736E-3);
LLVMValueRef sincof_p2 = lp_build_const_v4sf(-1.6666654611E-1);
/*
* Evaluate the second polynom (Pi/4 <= x <= 0)
*
* y2 = *(v4sf*)_ps_sincof_p0;
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
* y2 = _mm_mul_ps(y2, z);
* y2 = _mm_mul_ps(y2, x);
* y2 = _mm_add_ps(y2, x);
*/
LLVMValueRef y2_3 = LLVMBuildMul(b, z, sincof_p0, "y2_3");
LLVMValueRef y2_4 = LLVMBuildAdd(b, y2_3, sincof_p1, "y2_4");
LLVMValueRef y2_5 = LLVMBuildMul(b, y2_4, z, "y2_5");
LLVMValueRef y2_6 = LLVMBuildAdd(b, y2_5, sincof_p2, "y2_6");
LLVMValueRef y2_7 = LLVMBuildMul(b, y2_6, z, "y2_7");
LLVMValueRef y2_8 = LLVMBuildMul(b, y2_7, x_3, "y2_8");
LLVMValueRef y2_9 = LLVMBuildAdd(b, y2_8, x_3, "y2_9");
/*
* select the correct result from the two polynoms
* xmm3 = poly_mask;
* y2 = _mm_and_ps(xmm3, y2); //, xmm3);
* y = _mm_andnot_ps(xmm3, y);
* y = _mm_add_ps(y,y2);
*/
LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, v4si, "y2_i");
LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, v4si, "y_i");
LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
LLVMValueRef poly_mask_inv = LLVMBuildXor(b, poly_mask, inv, "poly_mask_inv");
LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
LLVMValueRef y_combine = LLVMBuildAdd(b, y_and, y2_and, "y_combine");
/*
* update the sign
* y = _mm_xor_ps(y, sign_bit);
*/
LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit, "y_sin");
LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, v4sf, "y_result");
return y_result;
}
/**