nir: Move most of nir_format_convert to a C file
There's no good reason for this to be header-only besides laziness on my part when I first wrote a few "small" helpers. Some of those are pretty good sized and don't need to be inlined. Keeping the original copyright since this is just moving code. Reviewed-by: Alyssa Rosenzweig <alyssa@rosenzweig.io> Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28793>
This commit is contained in:

committed by
Marge Bot

parent
9d3b144018
commit
34161d3fda
@@ -111,6 +111,7 @@ files_libnir = files(
|
||||
'nir_deref.h',
|
||||
'nir_divergence_analysis.c',
|
||||
'nir_dominance.c',
|
||||
'nir_format_convert.c',
|
||||
'nir_format_convert.h',
|
||||
'nir_from_ssa.c',
|
||||
'nir_functions.c',
|
||||
|
421
src/compiler/nir/nir_format_convert.c
Normal file
421
src/compiler/nir/nir_format_convert.c
Normal file
@@ -0,0 +1,421 @@
|
||||
/*
|
||||
* Copyright © 2017 Intel Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice (including the next
|
||||
* paragraph) shall be included in all copies or substantial portions of the
|
||||
* Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "nir_format_convert.h"
|
||||
|
||||
#include "util/format_rgb9e5.h"
|
||||
#include "util/macros.h"
|
||||
|
||||
nir_def *
|
||||
nir_format_mask_uvec(nir_builder *b, nir_def *src, const unsigned *bits)
|
||||
{
|
||||
nir_const_value mask[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(mask, 0, sizeof(mask));
|
||||
for (unsigned i = 0; i < src->num_components; i++) {
|
||||
assert(bits[i] < 32);
|
||||
mask[i].u32 = (1u << bits[i]) - 1;
|
||||
}
|
||||
return nir_iand(b, src, nir_build_imm(b, src->num_components, 32, mask));
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_sign_extend_ivec(nir_builder *b, nir_def *src,
|
||||
const unsigned *bits)
|
||||
{
|
||||
assert(src->num_components <= 4);
|
||||
nir_def *comps[4];
|
||||
for (unsigned i = 0; i < src->num_components; i++) {
|
||||
unsigned shift = src->bit_size - bits[i];
|
||||
comps[i] = nir_ishr_imm(b, nir_ishl_imm(b, nir_channel(b, src, i), shift),
|
||||
shift);
|
||||
}
|
||||
return nir_vec(b, comps, src->num_components);
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_unpack_int(nir_builder *b, nir_def *packed,
|
||||
const unsigned *bits, unsigned num_components,
|
||||
bool sign_extend)
|
||||
{
|
||||
assert(num_components >= 1 && num_components <= 4);
|
||||
const unsigned bit_size = packed->bit_size;
|
||||
nir_def *comps[4];
|
||||
|
||||
if (bits[0] >= bit_size) {
|
||||
assert(bits[0] == bit_size);
|
||||
assert(num_components == 1);
|
||||
return packed;
|
||||
}
|
||||
|
||||
unsigned next_chan = 0;
|
||||
unsigned offset = 0;
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
assert(bits[i] < bit_size);
|
||||
assert(offset + bits[i] <= bit_size);
|
||||
nir_def *chan = nir_channel(b, packed, next_chan);
|
||||
unsigned lshift = bit_size - (offset + bits[i]);
|
||||
unsigned rshift = bit_size - bits[i];
|
||||
if (sign_extend)
|
||||
comps[i] = nir_ishr_imm(b, nir_ishl_imm(b, chan, lshift), rshift);
|
||||
else
|
||||
comps[i] = nir_ushr_imm(b, nir_ishl_imm(b, chan, lshift), rshift);
|
||||
offset += bits[i];
|
||||
if (offset >= bit_size) {
|
||||
next_chan++;
|
||||
offset -= bit_size;
|
||||
}
|
||||
}
|
||||
|
||||
return nir_vec(b, comps, num_components);
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_pack_uint_unmasked(nir_builder *b, nir_def *color,
|
||||
const unsigned *bits, unsigned num_components)
|
||||
{
|
||||
assert(num_components >= 1 && num_components <= 4);
|
||||
nir_def *packed = nir_imm_int(b, 0);
|
||||
unsigned offset = 0;
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
packed = nir_ior(b, packed, nir_shift_imm(b, nir_channel(b, color, i), offset));
|
||||
offset += bits[i];
|
||||
}
|
||||
assert(offset <= packed->bit_size);
|
||||
|
||||
return packed;
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_pack_uint_unmasked_ssa(nir_builder *b, nir_def *color,
|
||||
nir_def *bits)
|
||||
{
|
||||
nir_def *packed = nir_imm_int(b, 0);
|
||||
nir_def *offset = nir_imm_int(b, 0);
|
||||
for (unsigned i = 0; i < bits->num_components; i++) {
|
||||
packed = nir_ior(b, packed, nir_ishl(b, nir_channel(b, color, i), offset));
|
||||
offset = nir_iadd(b, offset, nir_channel(b, bits, i));
|
||||
}
|
||||
return packed;
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_pack_uint(nir_builder *b, nir_def *color,
|
||||
const unsigned *bits, unsigned num_components)
|
||||
{
|
||||
return nir_format_pack_uint_unmasked(b, nir_format_mask_uvec(b, color, bits),
|
||||
bits, num_components);
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_bitcast_uvec_unmasked(nir_builder *b, nir_def *src,
|
||||
unsigned src_bits, unsigned dst_bits)
|
||||
{
|
||||
assert(src->bit_size >= src_bits && src->bit_size >= dst_bits);
|
||||
assert(src_bits == 8 || src_bits == 16 || src_bits == 32);
|
||||
assert(dst_bits == 8 || dst_bits == 16 || dst_bits == 32);
|
||||
|
||||
if (src_bits == dst_bits)
|
||||
return src;
|
||||
|
||||
const unsigned dst_components =
|
||||
DIV_ROUND_UP(src->num_components * src_bits, dst_bits);
|
||||
assert(dst_components <= 4);
|
||||
|
||||
nir_def *dst_chan[4] = { 0 };
|
||||
if (dst_bits > src_bits) {
|
||||
unsigned shift = 0;
|
||||
unsigned dst_idx = 0;
|
||||
for (unsigned i = 0; i < src->num_components; i++) {
|
||||
nir_def *shifted = nir_ishl_imm(b, nir_channel(b, src, i),
|
||||
shift);
|
||||
if (shift == 0) {
|
||||
dst_chan[dst_idx] = shifted;
|
||||
} else {
|
||||
dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
|
||||
}
|
||||
|
||||
shift += src_bits;
|
||||
if (shift >= dst_bits) {
|
||||
dst_idx++;
|
||||
shift = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
unsigned mask = ~0u >> (32 - dst_bits);
|
||||
|
||||
unsigned src_idx = 0;
|
||||
unsigned shift = 0;
|
||||
for (unsigned i = 0; i < dst_components; i++) {
|
||||
dst_chan[i] = nir_iand_imm(b,
|
||||
nir_ushr_imm(b,
|
||||
nir_channel(b, src, src_idx),
|
||||
shift),
|
||||
mask);
|
||||
shift += dst_bits;
|
||||
if (shift >= src_bits) {
|
||||
src_idx++;
|
||||
shift = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return nir_vec(b, dst_chan, dst_components);
|
||||
}
|
||||
|
||||
static nir_def *
|
||||
_nir_format_norm_factor(nir_builder *b, const unsigned *bits,
|
||||
unsigned num_components,
|
||||
bool is_signed)
|
||||
{
|
||||
nir_const_value factor[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(factor, 0, sizeof(factor));
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
assert(bits[i] <= 32);
|
||||
factor[i].f32 = (1ull << (bits[i] - is_signed)) - 1;
|
||||
}
|
||||
return nir_build_imm(b, num_components, 32, factor);
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_unorm_to_float(nir_builder *b, nir_def *u, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, u->num_components, false);
|
||||
|
||||
return nir_fdiv(b, nir_u2f32(b, u), factor);
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_snorm_to_float(nir_builder *b, nir_def *s, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, s->num_components, true);
|
||||
|
||||
return nir_fmax(b, nir_fdiv(b, nir_i2f32(b, s), factor),
|
||||
nir_imm_float(b, -1.0f));
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_float_to_unorm(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, f->num_components, false);
|
||||
|
||||
/* Clamp to the range [0, 1] */
|
||||
f = nir_fsat(b, f);
|
||||
|
||||
return nir_f2u32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_float_to_snorm(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, f->num_components, true);
|
||||
|
||||
/* Clamp to the range [-1, 1] */
|
||||
f = nir_fmin(b, nir_fmax(b, f, nir_imm_float(b, -1)), nir_imm_float(b, 1));
|
||||
|
||||
return nir_f2i32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
|
||||
}
|
||||
|
||||
|
||||
/* Converts a vector of floats to a vector of half-floats packed in the low 16
|
||||
* bits.
|
||||
*/
|
||||
nir_def *
|
||||
nir_format_float_to_half(nir_builder *b, nir_def *f)
|
||||
{
|
||||
nir_def *zero = nir_imm_float(b, 0);
|
||||
nir_def *f16comps[4];
|
||||
for (unsigned i = 0; i < f->num_components; i++)
|
||||
f16comps[i] = nir_pack_half_2x16_split(b, nir_channel(b, f, i), zero);
|
||||
return nir_vec(b, f16comps, f->num_components);
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_linear_to_srgb(nir_builder *b, nir_def *c)
|
||||
{
|
||||
nir_def *linear = nir_fmul_imm(b, c, 12.92f);
|
||||
nir_def *curved =
|
||||
nir_fadd_imm(b, nir_fmul_imm(b, nir_fpow_imm(b, c, 1.0 / 2.4), 1.055f),
|
||||
-0.055f);
|
||||
|
||||
return nir_fsat(b, nir_bcsel(b, nir_flt_imm(b, c, 0.0031308f),
|
||||
linear, curved));
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_srgb_to_linear(nir_builder *b, nir_def *c)
|
||||
{
|
||||
nir_def *linear = nir_fdiv_imm(b, c, 12.92f);
|
||||
nir_def *curved =
|
||||
nir_fpow(b, nir_fmul_imm(b, nir_fadd_imm(b, c, 0.055f), 1.0 / 1.055f),
|
||||
nir_imm_float(b, 2.4f));
|
||||
|
||||
return nir_fsat(b, nir_bcsel(b, nir_fle_imm(b, c, 0.04045f),
|
||||
linear, curved));
|
||||
}
|
||||
|
||||
/* Clamps a vector of uints so they don't extend beyond the given number of
|
||||
* bits per channel.
|
||||
*/
|
||||
nir_def *
|
||||
nir_format_clamp_uint(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
if (bits[0] == 32)
|
||||
return f;
|
||||
|
||||
nir_const_value max[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(max, 0, sizeof(max));
|
||||
for (unsigned i = 0; i < f->num_components; i++) {
|
||||
assert(bits[i] < 32 && bits[i] <= f->bit_size);
|
||||
max[i].u32 = u_uintN_max(bits[i]);
|
||||
}
|
||||
return nir_umin(b, f, nir_u2uN(b, nir_build_imm(b, f->num_components, 32, max), f->bit_size));
|
||||
}
|
||||
|
||||
/* Clamps a vector of sints so they don't extend beyond the given number of
|
||||
* bits per channel.
|
||||
*/
|
||||
nir_def *
|
||||
nir_format_clamp_sint(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
if (bits[0] == 32)
|
||||
return f;
|
||||
|
||||
nir_const_value min[NIR_MAX_VEC_COMPONENTS], max[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(min, 0, sizeof(min));
|
||||
memset(max, 0, sizeof(max));
|
||||
for (unsigned i = 0; i < f->num_components; i++) {
|
||||
assert(bits[i] < 32 && bits[i] <= f->bit_size);
|
||||
max[i].i32 = u_intN_max(bits[i]);
|
||||
min[i].i32 = u_intN_min(bits[i]);
|
||||
}
|
||||
f = nir_imin(b, f, nir_i2iN(b, nir_build_imm(b, f->num_components, 32, max), f->bit_size));
|
||||
f = nir_imax(b, f, nir_i2iN(b, nir_build_imm(b, f->num_components, 32, min), f->bit_size));
|
||||
|
||||
return f;
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_unpack_11f11f10f(nir_builder *b, nir_def *packed)
|
||||
{
|
||||
nir_def *chans[3];
|
||||
chans[0] = nir_mask_shift(b, packed, 0x000007ff, 4);
|
||||
chans[1] = nir_mask_shift(b, packed, 0x003ff800, -7);
|
||||
chans[2] = nir_mask_shift(b, packed, 0xffc00000, -17);
|
||||
|
||||
for (unsigned i = 0; i < 3; i++)
|
||||
chans[i] = nir_unpack_half_2x16_split_x(b, chans[i]);
|
||||
|
||||
return nir_vec(b, chans, 3);
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_pack_11f11f10f(nir_builder *b, nir_def *color)
|
||||
{
|
||||
/* 10 and 11-bit floats are unsigned. Clamp to non-negative */
|
||||
nir_def *clamped = nir_fmax(b, color, nir_imm_float(b, 0));
|
||||
|
||||
nir_def *undef = nir_undef(b, 1, color->bit_size);
|
||||
nir_def *p1 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 0),
|
||||
nir_channel(b, clamped, 1));
|
||||
nir_def *p2 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 2),
|
||||
undef);
|
||||
|
||||
/* A 10 or 11-bit float has the same exponent as a 16-bit float but with
|
||||
* fewer mantissa bits and no sign bit. All we have to do is throw away
|
||||
* the sign bit and the bottom mantissa bits and shift it into place.
|
||||
*/
|
||||
nir_def *packed = nir_imm_int(b, 0);
|
||||
packed = nir_mask_shift_or(b, packed, p1, 0x00007ff0, -4);
|
||||
packed = nir_mask_shift_or(b, packed, p1, 0x7ff00000, -9);
|
||||
packed = nir_mask_shift_or(b, packed, p2, 0x00007fe0, 17);
|
||||
|
||||
return packed;
|
||||
}
|
||||
|
||||
nir_def *
|
||||
nir_format_pack_r9g9b9e5(nir_builder *b, nir_def *color)
|
||||
{
|
||||
/* See also float3_to_rgb9e5 */
|
||||
|
||||
/* First, we need to clamp it to range. The fmax(color, 0) will also flush
|
||||
* NaN to 0. We set exact to ensure that nothing optimizes this behavior
|
||||
* away from us.
|
||||
*/
|
||||
float exact_save = b->exact;
|
||||
b->exact = true;
|
||||
nir_def *clamped =
|
||||
nir_fmin(b, nir_fmax(b, color, nir_imm_float(b, 0)),
|
||||
nir_imm_float(b, MAX_RGB9E5));
|
||||
b->exact = exact_save;
|
||||
|
||||
/* maxrgb.u = MAX3(rc.u, gc.u, bc.u); */
|
||||
nir_def *maxu = nir_umax(b, nir_channel(b, clamped, 0),
|
||||
nir_umax(b, nir_channel(b, clamped, 1),
|
||||
nir_channel(b, clamped, 2)));
|
||||
|
||||
/* maxrgb.u += maxrgb.u & (1 << (23-9)); */
|
||||
maxu = nir_iadd(b, maxu, nir_iand_imm(b, maxu, 1 << 14));
|
||||
|
||||
/* exp_shared = MAX2((maxrgb.u >> 23), -RGB9E5_EXP_BIAS - 1 + 127) +
|
||||
* 1 + RGB9E5_EXP_BIAS - 127;
|
||||
*/
|
||||
nir_def *exp_shared =
|
||||
nir_iadd_imm(b, nir_umax(b, nir_ushr_imm(b, maxu, 23), nir_imm_int(b, -RGB9E5_EXP_BIAS - 1 + 127)),
|
||||
1 + RGB9E5_EXP_BIAS - 127);
|
||||
|
||||
/* revdenom_biasedexp = 127 - (exp_shared - RGB9E5_EXP_BIAS -
|
||||
* RGB9E5_MANTISSA_BITS) + 1;
|
||||
*/
|
||||
nir_def *revdenom_biasedexp =
|
||||
nir_isub_imm(b, 127 + RGB9E5_EXP_BIAS + RGB9E5_MANTISSA_BITS + 1,
|
||||
exp_shared);
|
||||
|
||||
/* revdenom.u = revdenom_biasedexp << 23; */
|
||||
nir_def *revdenom =
|
||||
nir_ishl_imm(b, revdenom_biasedexp, 23);
|
||||
|
||||
/* rm = (int) (rc.f * revdenom.f);
|
||||
* gm = (int) (gc.f * revdenom.f);
|
||||
* bm = (int) (bc.f * revdenom.f);
|
||||
*/
|
||||
nir_def *mantissa =
|
||||
nir_f2i32(b, nir_fmul(b, clamped, revdenom));
|
||||
|
||||
/* rm = (rm & 1) + (rm >> 1);
|
||||
* gm = (gm & 1) + (gm >> 1);
|
||||
* bm = (bm & 1) + (bm >> 1);
|
||||
*/
|
||||
mantissa = nir_iadd(b, nir_iand_imm(b, mantissa, 1),
|
||||
nir_ushr_imm(b, mantissa, 1));
|
||||
|
||||
nir_def *packed = nir_channel(b, mantissa, 0);
|
||||
packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 1), ~0, 9);
|
||||
packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 2), ~0, 18);
|
||||
packed = nir_mask_shift_or(b, packed, exp_shared, ~0, 27);
|
||||
|
||||
return packed;
|
||||
}
|
@@ -21,10 +21,14 @@
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef NIR_FORMAT_CONVERT_H
|
||||
#define NIR_FORMAT_CONVERT_H
|
||||
|
||||
#include "nir_builder.h"
|
||||
|
||||
#include "util/format_rgb9e5.h"
|
||||
#include "util/macros.h"
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static inline nir_def *
|
||||
nir_shift_imm(nir_builder *b, nir_def *value, int left_shift)
|
||||
@@ -60,68 +64,14 @@ nir_mask_shift_or(struct nir_builder *b, nir_def *dst, nir_def *src,
|
||||
return nir_ior(b, nir_mask_shift(b, src, src_mask, src_left_shift), dst);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_mask_uvec(nir_builder *b, nir_def *src, const unsigned *bits)
|
||||
{
|
||||
nir_const_value mask[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(mask, 0, sizeof(mask));
|
||||
for (unsigned i = 0; i < src->num_components; i++) {
|
||||
assert(bits[i] < 32);
|
||||
mask[i].u32 = (1u << bits[i]) - 1;
|
||||
}
|
||||
return nir_iand(b, src, nir_build_imm(b, src->num_components, 32, mask));
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_sign_extend_ivec(nir_builder *b, nir_def *src,
|
||||
const unsigned *bits)
|
||||
{
|
||||
assert(src->num_components <= 4);
|
||||
nir_def *comps[4];
|
||||
for (unsigned i = 0; i < src->num_components; i++) {
|
||||
unsigned shift = src->bit_size - bits[i];
|
||||
comps[i] = nir_ishr_imm(b, nir_ishl_imm(b, nir_channel(b, src, i), shift),
|
||||
shift);
|
||||
}
|
||||
return nir_vec(b, comps, src->num_components);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_unpack_int(nir_builder *b, nir_def *packed,
|
||||
const unsigned *bits, unsigned num_components,
|
||||
bool sign_extend)
|
||||
{
|
||||
assert(num_components >= 1 && num_components <= 4);
|
||||
const unsigned bit_size = packed->bit_size;
|
||||
nir_def *comps[4];
|
||||
|
||||
if (bits[0] >= bit_size) {
|
||||
assert(bits[0] == bit_size);
|
||||
assert(num_components == 1);
|
||||
return packed;
|
||||
}
|
||||
|
||||
unsigned next_chan = 0;
|
||||
unsigned offset = 0;
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
assert(bits[i] < bit_size);
|
||||
assert(offset + bits[i] <= bit_size);
|
||||
nir_def *chan = nir_channel(b, packed, next_chan);
|
||||
unsigned lshift = bit_size - (offset + bits[i]);
|
||||
unsigned rshift = bit_size - bits[i];
|
||||
if (sign_extend)
|
||||
comps[i] = nir_ishr_imm(b, nir_ishl_imm(b, chan, lshift), rshift);
|
||||
else
|
||||
comps[i] = nir_ushr_imm(b, nir_ishl_imm(b, chan, lshift), rshift);
|
||||
offset += bits[i];
|
||||
if (offset >= bit_size) {
|
||||
next_chan++;
|
||||
offset -= bit_size;
|
||||
}
|
||||
}
|
||||
|
||||
return nir_vec(b, comps, num_components);
|
||||
}
|
||||
nir_def *nir_format_mask_uvec(nir_builder *b, nir_def *src,
|
||||
const unsigned *bits);
|
||||
nir_def *nir_format_sign_extend_ivec(nir_builder *b, nir_def *src,
|
||||
const unsigned *bits);
|
||||
nir_def *nir_format_unpack_int(nir_builder *b, nir_def *packed,
|
||||
const unsigned *bits,
|
||||
unsigned num_components,
|
||||
bool sign_extend);
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_unpack_uint(nir_builder *b, nir_def *packed,
|
||||
@@ -137,332 +87,43 @@ nir_format_unpack_sint(nir_builder *b, nir_def *packed,
|
||||
return nir_format_unpack_int(b, packed, bits, num_components, true);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_pack_uint_unmasked(nir_builder *b, nir_def *color,
|
||||
const unsigned *bits, unsigned num_components)
|
||||
{
|
||||
assert(num_components >= 1 && num_components <= 4);
|
||||
nir_def *packed = nir_imm_int(b, 0);
|
||||
unsigned offset = 0;
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
packed = nir_ior(b, packed, nir_shift_imm(b, nir_channel(b, color, i), offset));
|
||||
offset += bits[i];
|
||||
}
|
||||
assert(offset <= packed->bit_size);
|
||||
nir_def *nir_format_pack_uint_unmasked(nir_builder *b, nir_def *color,
|
||||
const unsigned *bits,
|
||||
unsigned num_components);
|
||||
nir_def *nir_format_pack_uint_unmasked_ssa(nir_builder *b, nir_def *color,
|
||||
nir_def *bits);
|
||||
nir_def *nir_format_pack_uint(nir_builder *b, nir_def *color,
|
||||
const unsigned *bits,
|
||||
unsigned num_components);
|
||||
|
||||
return packed;
|
||||
}
|
||||
nir_def *nir_format_bitcast_uvec_unmasked(nir_builder *b, nir_def *src,
|
||||
unsigned src_bits,
|
||||
unsigned dst_bits);
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_pack_uint_unmasked_ssa(nir_builder *b, nir_def *color,
|
||||
nir_def *bits)
|
||||
{
|
||||
nir_def *packed = nir_imm_int(b, 0);
|
||||
nir_def *offset = nir_imm_int(b, 0);
|
||||
for (unsigned i = 0; i < bits->num_components; i++) {
|
||||
packed = nir_ior(b, packed, nir_ishl(b, nir_channel(b, color, i), offset));
|
||||
offset = nir_iadd(b, offset, nir_channel(b, bits, i));
|
||||
}
|
||||
return packed;
|
||||
}
|
||||
nir_def *nir_format_unorm_to_float(nir_builder *b, nir_def *u,
|
||||
const unsigned *bits);
|
||||
nir_def *nir_format_snorm_to_float(nir_builder *b, nir_def *s,
|
||||
const unsigned *bits);
|
||||
nir_def *nir_format_float_to_unorm(nir_builder *b, nir_def *f,
|
||||
const unsigned *bits);
|
||||
nir_def *nir_format_float_to_snorm(nir_builder *b, nir_def *f,
|
||||
const unsigned *bits);
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_pack_uint(nir_builder *b, nir_def *color,
|
||||
const unsigned *bits, unsigned num_components)
|
||||
{
|
||||
return nir_format_pack_uint_unmasked(b, nir_format_mask_uvec(b, color, bits),
|
||||
bits, num_components);
|
||||
}
|
||||
nir_def *nir_format_float_to_half(nir_builder *b, nir_def *f);
|
||||
nir_def *nir_format_linear_to_srgb(nir_builder *b, nir_def *c);
|
||||
nir_def *nir_format_srgb_to_linear(nir_builder *b, nir_def *c);
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_bitcast_uvec_unmasked(nir_builder *b, nir_def *src,
|
||||
unsigned src_bits, unsigned dst_bits)
|
||||
{
|
||||
assert(src->bit_size >= src_bits && src->bit_size >= dst_bits);
|
||||
assert(src_bits == 8 || src_bits == 16 || src_bits == 32);
|
||||
assert(dst_bits == 8 || dst_bits == 16 || dst_bits == 32);
|
||||
nir_def *nir_format_clamp_uint(nir_builder *b, nir_def *f,
|
||||
const unsigned *bits);
|
||||
nir_def *nir_format_clamp_sint(nir_builder *b, nir_def *f,
|
||||
const unsigned *bits);
|
||||
|
||||
if (src_bits == dst_bits)
|
||||
return src;
|
||||
nir_def *nir_format_unpack_11f11f10f(nir_builder *b, nir_def *packed);
|
||||
nir_def *nir_format_pack_11f11f10f(nir_builder *b, nir_def *color);
|
||||
nir_def *nir_format_pack_r9g9b9e5(nir_builder *b, nir_def *color);
|
||||
|
||||
const unsigned dst_components =
|
||||
DIV_ROUND_UP(src->num_components * src_bits, dst_bits);
|
||||
assert(dst_components <= 4);
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
#endif
|
||||
|
||||
nir_def *dst_chan[4] = { 0 };
|
||||
if (dst_bits > src_bits) {
|
||||
unsigned shift = 0;
|
||||
unsigned dst_idx = 0;
|
||||
for (unsigned i = 0; i < src->num_components; i++) {
|
||||
nir_def *shifted = nir_ishl_imm(b, nir_channel(b, src, i),
|
||||
shift);
|
||||
if (shift == 0) {
|
||||
dst_chan[dst_idx] = shifted;
|
||||
} else {
|
||||
dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
|
||||
}
|
||||
|
||||
shift += src_bits;
|
||||
if (shift >= dst_bits) {
|
||||
dst_idx++;
|
||||
shift = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
unsigned mask = ~0u >> (32 - dst_bits);
|
||||
|
||||
unsigned src_idx = 0;
|
||||
unsigned shift = 0;
|
||||
for (unsigned i = 0; i < dst_components; i++) {
|
||||
dst_chan[i] = nir_iand_imm(b,
|
||||
nir_ushr_imm(b,
|
||||
nir_channel(b, src, src_idx),
|
||||
shift),
|
||||
mask);
|
||||
shift += dst_bits;
|
||||
if (shift >= src_bits) {
|
||||
src_idx++;
|
||||
shift = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return nir_vec(b, dst_chan, dst_components);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
_nir_format_norm_factor(nir_builder *b, const unsigned *bits,
|
||||
unsigned num_components,
|
||||
bool is_signed)
|
||||
{
|
||||
nir_const_value factor[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(factor, 0, sizeof(factor));
|
||||
for (unsigned i = 0; i < num_components; i++) {
|
||||
assert(bits[i] <= 32);
|
||||
factor[i].f32 = (1ull << (bits[i] - is_signed)) - 1;
|
||||
}
|
||||
return nir_build_imm(b, num_components, 32, factor);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_unorm_to_float(nir_builder *b, nir_def *u, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, u->num_components, false);
|
||||
|
||||
return nir_fdiv(b, nir_u2f32(b, u), factor);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_snorm_to_float(nir_builder *b, nir_def *s, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, s->num_components, true);
|
||||
|
||||
return nir_fmax(b, nir_fdiv(b, nir_i2f32(b, s), factor),
|
||||
nir_imm_float(b, -1.0f));
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_float_to_unorm(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, f->num_components, false);
|
||||
|
||||
/* Clamp to the range [0, 1] */
|
||||
f = nir_fsat(b, f);
|
||||
|
||||
return nir_f2u32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_float_to_snorm(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
nir_def *factor =
|
||||
_nir_format_norm_factor(b, bits, f->num_components, true);
|
||||
|
||||
/* Clamp to the range [-1, 1] */
|
||||
f = nir_fmin(b, nir_fmax(b, f, nir_imm_float(b, -1)), nir_imm_float(b, 1));
|
||||
|
||||
return nir_f2i32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
|
||||
}
|
||||
|
||||
/* Converts a vector of floats to a vector of half-floats packed in the low 16
|
||||
* bits.
|
||||
*/
|
||||
static inline nir_def *
|
||||
nir_format_float_to_half(nir_builder *b, nir_def *f)
|
||||
{
|
||||
nir_def *zero = nir_imm_float(b, 0);
|
||||
nir_def *f16comps[4];
|
||||
for (unsigned i = 0; i < f->num_components; i++)
|
||||
f16comps[i] = nir_pack_half_2x16_split(b, nir_channel(b, f, i), zero);
|
||||
return nir_vec(b, f16comps, f->num_components);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_linear_to_srgb(nir_builder *b, nir_def *c)
|
||||
{
|
||||
nir_def *linear = nir_fmul_imm(b, c, 12.92f);
|
||||
nir_def *curved =
|
||||
nir_fadd_imm(b, nir_fmul_imm(b, nir_fpow_imm(b, c, 1.0 / 2.4), 1.055f),
|
||||
-0.055f);
|
||||
|
||||
return nir_fsat(b, nir_bcsel(b, nir_flt_imm(b, c, 0.0031308f),
|
||||
linear, curved));
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_srgb_to_linear(nir_builder *b, nir_def *c)
|
||||
{
|
||||
nir_def *linear = nir_fdiv_imm(b, c, 12.92f);
|
||||
nir_def *curved =
|
||||
nir_fpow(b, nir_fmul_imm(b, nir_fadd_imm(b, c, 0.055f), 1.0 / 1.055f),
|
||||
nir_imm_float(b, 2.4f));
|
||||
|
||||
return nir_fsat(b, nir_bcsel(b, nir_fle_imm(b, c, 0.04045f),
|
||||
linear, curved));
|
||||
}
|
||||
|
||||
/* Clamps a vector of uints so they don't extend beyond the given number of
|
||||
* bits per channel.
|
||||
*/
|
||||
static inline nir_def *
|
||||
nir_format_clamp_uint(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
if (bits[0] == 32)
|
||||
return f;
|
||||
|
||||
nir_const_value max[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(max, 0, sizeof(max));
|
||||
for (unsigned i = 0; i < f->num_components; i++) {
|
||||
assert(bits[i] < 32 && bits[i] <= f->bit_size);
|
||||
max[i].u32 = u_uintN_max(bits[i]);
|
||||
}
|
||||
return nir_umin(b, f, nir_u2uN(b, nir_build_imm(b, f->num_components, 32, max), f->bit_size));
|
||||
}
|
||||
|
||||
/* Clamps a vector of sints so they don't extend beyond the given number of
|
||||
* bits per channel.
|
||||
*/
|
||||
static inline nir_def *
|
||||
nir_format_clamp_sint(nir_builder *b, nir_def *f, const unsigned *bits)
|
||||
{
|
||||
if (bits[0] == 32)
|
||||
return f;
|
||||
|
||||
nir_const_value min[NIR_MAX_VEC_COMPONENTS], max[NIR_MAX_VEC_COMPONENTS];
|
||||
memset(min, 0, sizeof(min));
|
||||
memset(max, 0, sizeof(max));
|
||||
for (unsigned i = 0; i < f->num_components; i++) {
|
||||
assert(bits[i] < 32 && bits[i] <= f->bit_size);
|
||||
max[i].i32 = u_intN_max(bits[i]);
|
||||
min[i].i32 = u_intN_min(bits[i]);
|
||||
}
|
||||
f = nir_imin(b, f, nir_i2iN(b, nir_build_imm(b, f->num_components, 32, max), f->bit_size));
|
||||
f = nir_imax(b, f, nir_i2iN(b, nir_build_imm(b, f->num_components, 32, min), f->bit_size));
|
||||
|
||||
return f;
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_unpack_11f11f10f(nir_builder *b, nir_def *packed)
|
||||
{
|
||||
nir_def *chans[3];
|
||||
chans[0] = nir_mask_shift(b, packed, 0x000007ff, 4);
|
||||
chans[1] = nir_mask_shift(b, packed, 0x003ff800, -7);
|
||||
chans[2] = nir_mask_shift(b, packed, 0xffc00000, -17);
|
||||
|
||||
for (unsigned i = 0; i < 3; i++)
|
||||
chans[i] = nir_unpack_half_2x16_split_x(b, chans[i]);
|
||||
|
||||
return nir_vec(b, chans, 3);
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_pack_11f11f10f(nir_builder *b, nir_def *color)
|
||||
{
|
||||
/* 10 and 11-bit floats are unsigned. Clamp to non-negative */
|
||||
nir_def *clamped = nir_fmax(b, color, nir_imm_float(b, 0));
|
||||
|
||||
nir_def *undef = nir_undef(b, 1, color->bit_size);
|
||||
nir_def *p1 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 0),
|
||||
nir_channel(b, clamped, 1));
|
||||
nir_def *p2 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 2),
|
||||
undef);
|
||||
|
||||
/* A 10 or 11-bit float has the same exponent as a 16-bit float but with
|
||||
* fewer mantissa bits and no sign bit. All we have to do is throw away
|
||||
* the sign bit and the bottom mantissa bits and shift it into place.
|
||||
*/
|
||||
nir_def *packed = nir_imm_int(b, 0);
|
||||
packed = nir_mask_shift_or(b, packed, p1, 0x00007ff0, -4);
|
||||
packed = nir_mask_shift_or(b, packed, p1, 0x7ff00000, -9);
|
||||
packed = nir_mask_shift_or(b, packed, p2, 0x00007fe0, 17);
|
||||
|
||||
return packed;
|
||||
}
|
||||
|
||||
static inline nir_def *
|
||||
nir_format_pack_r9g9b9e5(nir_builder *b, nir_def *color)
|
||||
{
|
||||
/* See also float3_to_rgb9e5 */
|
||||
|
||||
/* First, we need to clamp it to range. The fmax(color, 0) will also flush
|
||||
* NaN to 0. We set exact to ensure that nothing optimizes this behavior
|
||||
* away from us.
|
||||
*/
|
||||
float exact_save = b->exact;
|
||||
b->exact = true;
|
||||
nir_def *clamped =
|
||||
nir_fmin(b, nir_fmax(b, color, nir_imm_float(b, 0)),
|
||||
nir_imm_float(b, MAX_RGB9E5));
|
||||
b->exact = exact_save;
|
||||
|
||||
/* maxrgb.u = MAX3(rc.u, gc.u, bc.u); */
|
||||
nir_def *maxu = nir_umax(b, nir_channel(b, clamped, 0),
|
||||
nir_umax(b, nir_channel(b, clamped, 1),
|
||||
nir_channel(b, clamped, 2)));
|
||||
|
||||
/* maxrgb.u += maxrgb.u & (1 << (23-9)); */
|
||||
maxu = nir_iadd(b, maxu, nir_iand_imm(b, maxu, 1 << 14));
|
||||
|
||||
/* exp_shared = MAX2((maxrgb.u >> 23), -RGB9E5_EXP_BIAS - 1 + 127) +
|
||||
* 1 + RGB9E5_EXP_BIAS - 127;
|
||||
*/
|
||||
nir_def *exp_shared =
|
||||
nir_iadd_imm(b, nir_umax(b, nir_ushr_imm(b, maxu, 23), nir_imm_int(b, -RGB9E5_EXP_BIAS - 1 + 127)),
|
||||
1 + RGB9E5_EXP_BIAS - 127);
|
||||
|
||||
/* revdenom_biasedexp = 127 - (exp_shared - RGB9E5_EXP_BIAS -
|
||||
* RGB9E5_MANTISSA_BITS) + 1;
|
||||
*/
|
||||
nir_def *revdenom_biasedexp =
|
||||
nir_isub_imm(b, 127 + RGB9E5_EXP_BIAS + RGB9E5_MANTISSA_BITS + 1,
|
||||
exp_shared);
|
||||
|
||||
/* revdenom.u = revdenom_biasedexp << 23; */
|
||||
nir_def *revdenom =
|
||||
nir_ishl_imm(b, revdenom_biasedexp, 23);
|
||||
|
||||
/* rm = (int) (rc.f * revdenom.f);
|
||||
* gm = (int) (gc.f * revdenom.f);
|
||||
* bm = (int) (bc.f * revdenom.f);
|
||||
*/
|
||||
nir_def *mantissa =
|
||||
nir_f2i32(b, nir_fmul(b, clamped, revdenom));
|
||||
|
||||
/* rm = (rm & 1) + (rm >> 1);
|
||||
* gm = (gm & 1) + (gm >> 1);
|
||||
* bm = (bm & 1) + (bm >> 1);
|
||||
*/
|
||||
mantissa = nir_iadd(b, nir_iand_imm(b, mantissa, 1),
|
||||
nir_ushr_imm(b, mantissa, 1));
|
||||
|
||||
nir_def *packed = nir_channel(b, mantissa, 0);
|
||||
packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 1), ~0, 9);
|
||||
packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 2), ~0, 18);
|
||||
packed = nir_mask_shift_or(b, packed, exp_shared, ~0, 27);
|
||||
|
||||
return packed;
|
||||
}
|
||||
#endif /* NIR_FORMAT_CONVERT_H */
|
||||
|
Reference in New Issue
Block a user