glsl: Add support for lowering 4x8 pack/unpack operations
Lower them to arithmetic and bit manipulation expressions. Reviewed-by: Chad Versace <chad.versace@linux.intel.com> Reviewed-by: Paul Berry <stereotype441@gmail.com>
This commit is contained in:
@@ -54,6 +54,12 @@ enum lower_packing_builtins_op {
|
||||
|
||||
LOWER_PACK_HALF_2x16_TO_SPLIT = 0x0040,
|
||||
LOWER_UNPACK_HALF_2x16_TO_SPLIT = 0x0080,
|
||||
|
||||
LOWER_PACK_SNORM_4x8 = 0x0100,
|
||||
LOWER_UNPACK_SNORM_4x8 = 0x0200,
|
||||
|
||||
LOWER_PACK_UNORM_4x8 = 0x0400,
|
||||
LOWER_UNPACK_UNORM_4x8 = 0x0800,
|
||||
};
|
||||
|
||||
bool do_common_optimization(exec_list *ir, bool linked,
|
||||
|
@@ -84,9 +84,15 @@ public:
|
||||
case LOWER_PACK_SNORM_2x16:
|
||||
*rvalue = lower_pack_snorm_2x16(op0);
|
||||
break;
|
||||
case LOWER_PACK_SNORM_4x8:
|
||||
*rvalue = lower_pack_snorm_4x8(op0);
|
||||
break;
|
||||
case LOWER_PACK_UNORM_2x16:
|
||||
*rvalue = lower_pack_unorm_2x16(op0);
|
||||
break;
|
||||
case LOWER_PACK_UNORM_4x8:
|
||||
*rvalue = lower_pack_unorm_4x8(op0);
|
||||
break;
|
||||
case LOWER_PACK_HALF_2x16:
|
||||
*rvalue = lower_pack_half_2x16(op0);
|
||||
break;
|
||||
@@ -96,9 +102,15 @@ public:
|
||||
case LOWER_UNPACK_SNORM_2x16:
|
||||
*rvalue = lower_unpack_snorm_2x16(op0);
|
||||
break;
|
||||
case LOWER_UNPACK_SNORM_4x8:
|
||||
*rvalue = lower_unpack_snorm_4x8(op0);
|
||||
break;
|
||||
case LOWER_UNPACK_UNORM_2x16:
|
||||
*rvalue = lower_unpack_unorm_2x16(op0);
|
||||
break;
|
||||
case LOWER_UNPACK_UNORM_4x8:
|
||||
*rvalue = lower_unpack_unorm_4x8(op0);
|
||||
break;
|
||||
case LOWER_UNPACK_HALF_2x16:
|
||||
*rvalue = lower_unpack_half_2x16(op0);
|
||||
break;
|
||||
@@ -137,18 +149,30 @@ private:
|
||||
case ir_unop_pack_snorm_2x16:
|
||||
result = op_mask & LOWER_PACK_SNORM_2x16;
|
||||
break;
|
||||
case ir_unop_pack_snorm_4x8:
|
||||
result = op_mask & LOWER_PACK_SNORM_4x8;
|
||||
break;
|
||||
case ir_unop_pack_unorm_2x16:
|
||||
result = op_mask & LOWER_PACK_UNORM_2x16;
|
||||
break;
|
||||
case ir_unop_pack_unorm_4x8:
|
||||
result = op_mask & LOWER_PACK_UNORM_4x8;
|
||||
break;
|
||||
case ir_unop_pack_half_2x16:
|
||||
result = op_mask & (LOWER_PACK_HALF_2x16 | LOWER_PACK_HALF_2x16_TO_SPLIT);
|
||||
break;
|
||||
case ir_unop_unpack_snorm_2x16:
|
||||
result = op_mask & LOWER_UNPACK_SNORM_2x16;
|
||||
break;
|
||||
case ir_unop_unpack_snorm_4x8:
|
||||
result = op_mask & LOWER_UNPACK_SNORM_4x8;
|
||||
break;
|
||||
case ir_unop_unpack_unorm_2x16:
|
||||
result = op_mask & LOWER_UNPACK_UNORM_2x16;
|
||||
break;
|
||||
case ir_unop_unpack_unorm_4x8:
|
||||
result = op_mask & LOWER_UNPACK_UNORM_4x8;
|
||||
break;
|
||||
case ir_unop_unpack_half_2x16:
|
||||
result = op_mask & (LOWER_UNPACK_HALF_2x16 | LOWER_UNPACK_HALF_2x16_TO_SPLIT);
|
||||
break;
|
||||
@@ -206,6 +230,30 @@ private:
|
||||
bit_and(swizzle_x(u), constant(0xffffu)));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Pack four uint8's into a single uint32.
|
||||
*
|
||||
* Interpret the given uvec4 as a uint32 4-typle. Pack the 4-tuple into a
|
||||
* uint32 where the least significant bits specify the first element of the
|
||||
* 4-tuple. Return the uint32.
|
||||
*/
|
||||
ir_rvalue*
|
||||
pack_uvec4_to_uint(ir_rvalue *uvec4_rval)
|
||||
{
|
||||
assert(uvec4_rval->type == glsl_type::uvec4_type);
|
||||
|
||||
/* uvec4 u = UVEC4_RVAL; */
|
||||
ir_variable *u = factory.make_temp(glsl_type::uvec4_type,
|
||||
"tmp_pack_uvec4_to_uint");
|
||||
factory.emit(assign(u, bit_and(uvec4_rval, constant(0xffu))));
|
||||
|
||||
/* return (u.w << 24) | (u.z << 16) | (u.y << 8) | u.x; */
|
||||
return bit_or(bit_or(lshift(swizzle_w(u), constant(24u)),
|
||||
lshift(swizzle_z(u), constant(16u))),
|
||||
bit_or(lshift(swizzle_y(u), constant(8u)),
|
||||
swizzle_x(u)));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Unpack a uint32 into two uint16's.
|
||||
*
|
||||
@@ -236,6 +284,44 @@ private:
|
||||
return deref(u2).val;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Unpack a uint32 into four uint8's.
|
||||
*
|
||||
* Interpret the given uint32 as a uint8 4-tuple where the uint32's least
|
||||
* significant bits specify the 4-tuple's first element. Return the uint8
|
||||
* 4-tuple as a uvec4.
|
||||
*/
|
||||
ir_rvalue*
|
||||
unpack_uint_to_uvec4(ir_rvalue *uint_rval)
|
||||
{
|
||||
assert(uint_rval->type == glsl_type::uint_type);
|
||||
|
||||
/* uint u = UINT_RVAL; */
|
||||
ir_variable *u = factory.make_temp(glsl_type::uint_type,
|
||||
"tmp_unpack_uint_to_uvec4_u");
|
||||
factory.emit(assign(u, uint_rval));
|
||||
|
||||
/* uvec4 u4; */
|
||||
ir_variable *u4 = factory.make_temp(glsl_type::uvec4_type,
|
||||
"tmp_unpack_uint_to_uvec4_u4");
|
||||
|
||||
/* u4.x = u & 0xffu; */
|
||||
factory.emit(assign(u4, bit_and(u, constant(0xffu)), WRITEMASK_X));
|
||||
|
||||
/* u4.y = (u >> 8u) & 0xffu; */
|
||||
factory.emit(assign(u4, bit_and(rshift(u, constant(8u)),
|
||||
constant(0xffu)), WRITEMASK_Y));
|
||||
|
||||
/* u4.z = (u >> 16u) & 0xffu; */
|
||||
factory.emit(assign(u4, bit_and(rshift(u, constant(16u)),
|
||||
constant(0xffu)), WRITEMASK_Z));
|
||||
|
||||
/* u4.w = (u >> 24u) */
|
||||
factory.emit(assign(u4, rshift(u, constant(24u)), WRITEMASK_W));
|
||||
|
||||
return deref(u4).val;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower a packSnorm2x16 expression.
|
||||
*
|
||||
@@ -285,6 +371,55 @@ private:
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower a packSnorm4x8 expression.
|
||||
*
|
||||
* \param vec4_rval is packSnorm4x8's input
|
||||
* \return packSnorm4x8's output as a uint rvalue
|
||||
*/
|
||||
ir_rvalue*
|
||||
lower_pack_snorm_4x8(ir_rvalue *vec4_rval)
|
||||
{
|
||||
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
|
||||
*
|
||||
* highp uint packSnorm4x8(vec4 v)
|
||||
* -------------------------------
|
||||
* First, converts each component of the normalized floating-point value
|
||||
* v into 8-bit integer values. Then, the results are packed into the
|
||||
* returned 32-bit unsigned integer.
|
||||
*
|
||||
* The conversion for component c of v to fixed point is done as
|
||||
* follows:
|
||||
*
|
||||
* packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
|
||||
*
|
||||
* The first component of the vector will be written to the least
|
||||
* significant bits of the output; the last component will be written to
|
||||
* the most significant bits.
|
||||
*
|
||||
* This function generates IR that approximates the following pseudo-GLSL:
|
||||
*
|
||||
* return pack_uvec4_to_uint(
|
||||
* uvec4(ivec4(
|
||||
* round(clamp(VEC4_RVALUE, -1.0f, 1.0f) * 127.0f))));
|
||||
*
|
||||
* It is necessary to first convert the vec4 to ivec4 rather than directly
|
||||
* converting vec4 to uvec4 because the latter conversion is undefined.
|
||||
* From page 87 (93 of pdf) of the GLSL 4.30 spec: "It is undefined to
|
||||
* convert a negative floating point value to an uint".
|
||||
*/
|
||||
assert(vec4_rval->type == glsl_type::vec4_type);
|
||||
|
||||
ir_rvalue *result = pack_uvec4_to_uint(
|
||||
i2u(f2i(round_even(mul(clamp(vec4_rval,
|
||||
constant(-1.0f),
|
||||
constant(1.0f)),
|
||||
constant(127.0f))))));
|
||||
|
||||
assert(result->type == glsl_type::uint_type);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower an unpackSnorm2x16 expression.
|
||||
*
|
||||
@@ -344,6 +479,65 @@ private:
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower an unpackSnorm4x8 expression.
|
||||
*
|
||||
* \param uint_rval is unpackSnorm4x8's input
|
||||
* \return unpackSnorm4x8's output as a vec4 rvalue
|
||||
*/
|
||||
ir_rvalue*
|
||||
lower_unpack_snorm_4x8(ir_rvalue *uint_rval)
|
||||
{
|
||||
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
|
||||
*
|
||||
* highp vec4 unpackSnorm4x8 (highp uint p)
|
||||
* ----------------------------------------
|
||||
* First, unpacks a single 32-bit unsigned integer p into four
|
||||
* 8-bit unsigned integers. Then, each component is converted to
|
||||
* a normalized floating-point value to generate the returned
|
||||
* four-component vector.
|
||||
*
|
||||
* The conversion for unpacked fixed-point value f to floating point is
|
||||
* done as follows:
|
||||
*
|
||||
* unpackSnorm4x8: clamp(f / 127.0, -1, +1)
|
||||
*
|
||||
* The first component of the returned vector will be extracted from the
|
||||
* least significant bits of the input; the last component will be
|
||||
* extracted from the most significant bits.
|
||||
*
|
||||
* This function generates IR that approximates the following pseudo-GLSL:
|
||||
*
|
||||
* return clamp(
|
||||
* ((ivec4(unpack_uint_to_uvec4(UINT_RVALUE)) << 24) >> 24) / 127.0f,
|
||||
* -1.0f, 1.0f);
|
||||
*
|
||||
* The above IR may appear unnecessarily complex, but the intermediate
|
||||
* conversion to ivec4 and the bit shifts are necessary to correctly unpack
|
||||
* negative floats.
|
||||
*
|
||||
* To see why, consider packing and then unpacking vec4(-1.0, 0.0, 0.0,
|
||||
* 0.0). packSnorm4x8 encodes -1.0 as the int8 0xff. During unpacking, we
|
||||
* place that int8 into an int32, which results in the *positive* integer
|
||||
* 0x000000ff. The int8's sign bit becomes, in the int32, the rather
|
||||
* unimportant bit 8. We must now extend the int8's sign bit into bits
|
||||
* 9-32, which is accomplished by left-shifting then right-shifting.
|
||||
*/
|
||||
|
||||
assert(uint_rval->type == glsl_type::uint_type);
|
||||
|
||||
ir_rvalue *result =
|
||||
clamp(div(i2f(rshift(lshift(u2i(unpack_uint_to_uvec4(uint_rval)),
|
||||
constant(24u)),
|
||||
constant(24u))),
|
||||
constant(127.0f)),
|
||||
constant(-1.0f),
|
||||
constant(1.0f));
|
||||
|
||||
assert(result->type == glsl_type::vec4_type);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower a packUnorm2x16 expression.
|
||||
*
|
||||
@@ -388,6 +582,50 @@ private:
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower a packUnorm4x8 expression.
|
||||
*
|
||||
* \param vec4_rval is packUnorm4x8's input
|
||||
* \return packUnorm4x8's output as a uint rvalue
|
||||
*/
|
||||
ir_rvalue*
|
||||
lower_pack_unorm_4x8(ir_rvalue *vec4_rval)
|
||||
{
|
||||
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
|
||||
*
|
||||
* highp uint packUnorm4x8 (vec4 v)
|
||||
* --------------------------------
|
||||
* First, converts each component of the normalized floating-point value
|
||||
* v into 8-bit integer values. Then, the results are packed into the
|
||||
* returned 32-bit unsigned integer.
|
||||
*
|
||||
* The conversion for component c of v to fixed point is done as
|
||||
* follows:
|
||||
*
|
||||
* packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
|
||||
*
|
||||
* The first component of the vector will be written to the least
|
||||
* significant bits of the output; the last component will be written to
|
||||
* the most significant bits.
|
||||
*
|
||||
* This function generates IR that approximates the following pseudo-GLSL:
|
||||
*
|
||||
* return pack_uvec4_to_uint(uvec4(
|
||||
* round(clamp(VEC2_RVALUE, 0.0f, 1.0f) * 255.0f)));
|
||||
*
|
||||
* Here it is safe to directly convert the vec4 to uvec4 because the the
|
||||
* vec4 has been clamped to a non-negative range.
|
||||
*/
|
||||
|
||||
assert(vec4_rval->type == glsl_type::vec4_type);
|
||||
|
||||
ir_rvalue *result = pack_uvec4_to_uint(
|
||||
f2u(round_even(mul(saturate(vec4_rval), constant(255.0f)))));
|
||||
|
||||
assert(result->type == glsl_type::uint_type);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower an unpackUnorm2x16 expression.
|
||||
*
|
||||
@@ -429,6 +667,47 @@ private:
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower an unpackUnorm4x8 expression.
|
||||
*
|
||||
* \param uint_rval is unpackUnorm4x8's input
|
||||
* \return unpackUnorm4x8's output as a vec4 rvalue
|
||||
*/
|
||||
ir_rvalue*
|
||||
lower_unpack_unorm_4x8(ir_rvalue *uint_rval)
|
||||
{
|
||||
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
|
||||
*
|
||||
* highp vec4 unpackUnorm4x8 (highp uint p)
|
||||
* ----------------------------------------
|
||||
* First, unpacks a single 32-bit unsigned integer p into four
|
||||
* 8-bit unsigned integers. Then, each component is converted to
|
||||
* a normalized floating-point value to generate the returned
|
||||
* two-component vector.
|
||||
*
|
||||
* The conversion for unpacked fixed-point value f to floating point is
|
||||
* done as follows:
|
||||
*
|
||||
* unpackUnorm4x8: f / 255.0
|
||||
*
|
||||
* The first component of the returned vector will be extracted from the
|
||||
* least significant bits of the input; the last component will be
|
||||
* extracted from the most significant bits.
|
||||
*
|
||||
* This function generates IR that approximates the following pseudo-GLSL:
|
||||
*
|
||||
* return vec4(unpack_uint_to_uvec4(UINT_RVALUE)) / 255.0;
|
||||
*/
|
||||
|
||||
assert(uint_rval->type == glsl_type::uint_type);
|
||||
|
||||
ir_rvalue *result = div(u2f(unpack_uint_to_uvec4(uint_rval)),
|
||||
constant(255.0f));
|
||||
|
||||
assert(result->type == glsl_type::vec4_type);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Lower the component-wise calculation of packHalf2x16.
|
||||
*
|
||||
|
Reference in New Issue
Block a user