aco: implement sub-dword swaps

Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4469>
This commit is contained in:
Rhys Perry
2020-04-06 17:13:52 +01:00
committed by Marge Bot
parent 83fdb1ed3d
commit 2ab45f41e0
3 changed files with 320 additions and 140 deletions

View File

@@ -490,6 +490,7 @@ formats = [("pseudo", [Format.PSEUDO], 'Pseudo_instruction', list(itertools.prod
("reduction", [Format.PSEUDO_REDUCTION], 'Pseudo_reduction_instruction', [(3, 2), (3, 4)]),
("vop1", [Format.VOP1], 'VOP1_instruction', [(1, 1), (2, 2)]),
("vop2", [Format.VOP2], 'VOP2_instruction', itertools.product([1, 2], [2, 3])),
("vop2_sdwa", [Format.VOP2, Format.SDWA], 'SDWA_instruction', itertools.product([1, 2], [2, 3])),
("vopc", [Format.VOPC], 'VOPC_instruction', itertools.product([1, 2], [2])),
("vop3", [Format.VOP3A], 'VOP3A_instruction', [(1, 3), (1, 2), (1, 1), (2, 2)]),
("vintrp", [Format.VINTRP], 'Interp_instruction', [(1, 2), (1, 3)]),
@@ -527,6 +528,7 @@ formats = [("pseudo", [Format.PSEUDO], 'Pseudo_instruction', list(itertools.prod
% for dest, field_name in zip(f.get_builder_field_dests(), f.get_builder_field_names()):
instr->${dest} = ${field_name};
% endfor
${f.get_builder_initialization(num_operands)}
% endfor
return insert(instr);
}

View File

@@ -703,6 +703,181 @@ struct copy_operation {
};
};
void split_copy(unsigned offset, Definition *def, Operand *op, const copy_operation& src, bool ignore_uses, unsigned max_size)
{
PhysReg def_reg = src.def.physReg();
PhysReg op_reg = src.op.physReg();
def_reg.reg_b += offset;
op_reg.reg_b += offset;
max_size = MIN2(max_size, src.def.regClass().type() == RegType::vgpr ? 4 : 8);
/* make sure the size is a power of two and reg % bytes == 0 */
unsigned bytes = 1;
for (; bytes <= max_size; bytes *= 2) {
unsigned next = bytes * 2u;
bool can_increase = def_reg.reg_b % next == 0 &&
offset + next <= src.bytes && next <= max_size;
if (!src.op.isConstant() && can_increase)
can_increase = op_reg.reg_b % next == 0;
for (unsigned i = 0; !ignore_uses && can_increase && (i < bytes); i++)
can_increase = (src.uses[offset + bytes + i] == 0) == (src.uses[offset] == 0);
if (!can_increase)
break;
}
RegClass def_cls = bytes % 4 == 0 ? RegClass(src.def.regClass().type(), bytes / 4u) :
RegClass(src.def.regClass().type(), bytes).as_subdword();
*def = Definition(src.def.tempId(), def_reg, def_cls);
if (src.op.isConstant()) {
assert(offset == 0 || (offset == 4 && src.op.bytes() == 8));
if (src.op.bytes() == 8 && bytes == 4)
*op = Operand(uint32_t(src.op.constantValue64() >> (offset * 8u)));
else
*op = src.op;
} else {
RegClass op_cls = bytes % 4 == 0 ? RegClass(src.op.regClass().type(), bytes / 4u) :
RegClass(src.op.regClass().type(), bytes).as_subdword();
*op = Operand(op_reg, op_cls);
op->setTemp(Temp(src.op.tempId(), op_cls));
}
}
uint32_t get_intersection_mask(int a_start, int a_size,
int b_start, int b_size)
{
int intersection_start = MAX2(b_start - a_start, 0);
int intersection_end = MAX2(b_start + b_size - a_start, 0);
if (intersection_start >= a_size || intersection_end == 0)
return 0;
uint32_t mask = u_bit_consecutive(0, a_size);
return u_bit_consecutive(intersection_start, intersection_end - intersection_start) & mask;
}
bool do_copy(lower_context* ctx, Builder& bld, const copy_operation& copy, bool *preserve_scc)
{
bool did_copy = false;
for (unsigned offset = 0; offset < copy.bytes;) {
if (copy.uses[offset]) {
offset++;
continue;
}
Definition def;
Operand op;
split_copy(offset, &def, &op, copy, false, 8);
if (def.physReg() == scc) {
bld.sopc(aco_opcode::s_cmp_lg_i32, def, op, Operand(0u));
*preserve_scc = true;
} else if (def.bytes() == 8 && def.getTemp().type() == RegType::sgpr) {
bld.sop1(aco_opcode::s_mov_b64, def, Operand(op.physReg(), s2));
} else {
bld.copy(def, op);
}
ctx->program->statistics[statistic_copies]++;
did_copy = true;
offset += def.bytes();
}
return did_copy;
}
void do_swap(lower_context *ctx, Builder& bld, const copy_operation& copy, bool preserve_scc, Pseudo_instruction *pi)
{
unsigned offset = 0;
if (copy.bytes == 3 && (copy.def.physReg().reg_b % 4 <= 1) &&
(copy.def.physReg().reg_b % 4) == (copy.op.physReg().reg_b % 4)) {
/* instead of doing a 2-byte and 1-byte swap, do a 4-byte swap and then fixup with a 1-byte swap */
PhysReg op = copy.op.physReg();
PhysReg def = copy.def.physReg();
op.reg_b &= ~0x3;
def.reg_b &= ~0x3;
copy_operation tmp;
tmp.op = Operand(op, v1);
tmp.def = Definition(def, v1);
tmp.bytes = 4;
memset(tmp.uses, 1, 4);
do_swap(ctx, bld, tmp, preserve_scc, pi);
op.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
def.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
tmp.op = Operand(op, v1b);
tmp.def = Definition(def, v1b);
tmp.bytes = 1;
tmp.uses[0] = 1;
do_swap(ctx, bld, tmp, preserve_scc, pi);
offset = copy.bytes;
}
for (; offset < copy.bytes;) {
Definition def;
Operand op;
split_copy(offset, &def, &op, copy, true, 4);
assert(op.regClass() == def.regClass());
Operand def_as_op = Operand(def.physReg(), def.regClass());
Definition op_as_def = Definition(op.physReg(), op.regClass());
if (ctx->program->chip_class >= GFX9 && def.regClass() == v1) {
bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op);
ctx->program->statistics[statistic_copies]++;
} else if (def.regClass() == v1) {
bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
ctx->program->statistics[statistic_copies] += 3;
} else if (op.physReg() == scc || def.physReg() == scc) {
/* we need to swap scc and another sgpr */
assert(!preserve_scc);
PhysReg other = op.physReg() == scc ? def.physReg() : op.physReg();
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
ctx->program->statistics[statistic_copies] += 3;
} else if (def.regClass() == s1) {
if (preserve_scc) {
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), op);
bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
bld.sop1(aco_opcode::s_mov_b32, def, Operand(pi->scratch_sgpr, s1));
} else {
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, def, Definition(scc, s1), op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
}
ctx->program->statistics[statistic_copies] += 3;
} else if (ctx->program->chip_class >= GFX9 && def.bytes() == 2 && def.physReg().reg() == op.physReg().reg()) {
aco_ptr<VOP3P_instruction> vop3p{create_instruction<VOP3P_instruction>(aco_opcode::v_pk_add_u16, Format::VOP3P, 2, 1)};
vop3p->operands[0] = Operand(PhysReg{op.physReg().reg()}, v1);
vop3p->operands[1] = Operand(0u);
vop3p->definitions[0] = Definition(PhysReg{op.physReg().reg()}, v1);
vop3p->opsel_lo = 0x1;
vop3p->opsel_hi = 0x2;
bld.insert(std::move(vop3p));
} else {
assert(def.regClass().is_subdword());
bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
bld.vop2_sdwa(aco_opcode::v_xor_b32, def, op, def_as_op);
bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
ctx->program->statistics[statistic_copies] += 3;
}
offset += def.bytes();
}
/* fixup in case we swapped bytes we shouldn't have */
copy_operation tmp_copy = copy;
tmp_copy.op.setFixed(copy.def.physReg());
tmp_copy.def.setFixed(copy.op.physReg());
do_copy(ctx, bld, tmp_copy, &preserve_scc);
}
void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
{
Builder bld(ctx->program, &ctx->instructions);
@@ -761,114 +936,107 @@ void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context*
it = copy_map.begin();
while (it != copy_map.end()) {
/* split cross half-reg copies: SDWA can only access bytes and shorts */
if (it->second.def.regClass().is_subdword()) {
PhysReg def_reg = it->second.def.physReg();
PhysReg op_reg = it->second.op.physReg();
unsigned new_bytes = 0;
if (it->second.bytes > 1 && (def_reg.byte() % 2 || op_reg.byte() % 2)) {
new_bytes = 1;
} else if (it->second.bytes > 2 && (def_reg.byte() || op_reg.byte())) {
new_bytes = 2;
} else if (it->second.bytes == 3) {
new_bytes = 2;
} else if (it->second.bytes > 4) {
assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
new_bytes = 4;
}
if (new_bytes) {
RegClass rc = RegClass(RegType::vgpr, it->second.bytes - new_bytes).as_subdword();
def_reg.reg_b += new_bytes;
op_reg.reg_b += new_bytes;
copy_operation copy = {Operand(op_reg, rc), Definition(def_reg, rc), it->second.bytes - new_bytes};
copy.is_used = it->second.is_used >> (8 * new_bytes);
copy_map[def_reg] = copy;
rc = RegClass(RegType::vgpr, new_bytes).as_subdword();
it->second.op = Operand(it->second.op.physReg(), rc);
it->second.def = Definition(it->second.def.physReg(), rc);
it->second.is_used = it->second.is_used & ((1 << (8 * new_bytes)) - 1);
it->second.bytes = new_bytes;
}
/* try to coalesce 32-bit sgpr copies to 64-bit copies */
if (it->second.is_used == 0 &&
it->second.def.getTemp().type() == RegType::sgpr && it->second.bytes == 4 &&
!it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
/* convert dword moves to normal regclass */
if (it->second.bytes == 4) {
it->second.op = Operand(it->second.op.physReg(), v1);
it->second.def = Definition(it->second.def.physReg(), v1);
PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
if (other != copy_map.end() && !other->second.is_used && other->second.bytes == 4 &&
other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
it = it->first % 2 ? other : it;
copy_map.erase(to_erase);
it->second.bytes = 8;
}
}
// TODO: try to coalesce subdword copies
/* split multi-reg copies */
if (it->second.bytes > 4 && !it->second.op.isConstant()) {
assert(!it->second.def.regClass().is_subdword());
RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 1);
Definition hi_def = Definition(PhysReg{it->first + 1}, rc);
rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 1);
Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 1}, rc);
copy_operation copy = {hi_op, hi_def, it->second.bytes - 4};
copy.is_used = it->second.is_used >> 32;
copy_map[hi_def.physReg()] = copy;
assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
it->second.op = Operand(it->second.op.physReg(), it->second.op.regClass().type() == RegType::sgpr ? s1 : v1);
it->second.def = Definition(it->second.def.physReg(), it->second.def.regClass().type() == RegType::sgpr ? s1 : v1);
it->second.is_used = it->second.is_used & 0xFFFFFFFF;
it->second.bytes = 4;
}
/* the target reg is not used as operand for any other copy */
if (it->second.is_used == 0) {
/* try to coalesce 32-bit sgpr copies to 64-bit copies */
if (it->second.def.getTemp().type() == RegType::sgpr && it->second.bytes == 4 &&
!it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
if (other != copy_map.end() && !other->second.is_used && other->second.bytes == 4 &&
other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
it = it->first % 2 ? other : it;
copy_map.erase(to_erase);
it->second.bytes = 8;
}
}
// TODO: try to coalesce subdword copies
if (it->second.def.physReg() == scc) {
bld.sopc(aco_opcode::s_cmp_lg_i32, it->second.def, it->second.op, Operand(0u));
preserve_scc = true;
} else if (it->second.bytes == 8 && it->second.def.getTemp().type() == RegType::sgpr) {
bld.sop1(aco_opcode::s_mov_b64, it->second.def, Operand(it->second.op.physReg(), s2));
} else if (it->second.bytes == 8 && it->second.op.isConstant()) {
uint64_t val = it->second.op.constantValue64();
bld.vop1(aco_opcode::v_mov_b32, it->second.def, Operand((uint32_t)val));
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{it->second.def.physReg() + 1}, v1),
Operand((uint32_t)(val >> 32)));
ctx->program->statistics[statistic_copies]++;
} else {
bld.copy(it->second.def, it->second.op);
/* find portions where the target reg is not used as operand for any other copy */
if (it->second.is_used) {
if (it->second.op.isConstant()) {
/* we have to skip constants until is_used=0 */
++it;
continue;
}
/* reduce the number of uses of the operand reg by one */
if (!it->second.op.isConstant()) {
unsigned has_zero_use_bytes = 0;
for (unsigned i = 0; i < it->second.bytes; i++)
has_zero_use_bytes |= (it->second.uses[i] == 0) << i;
if (has_zero_use_bytes) {
/* Skipping partial copying and doing a v_swap_b32 and then fixup
* copies is usually beneficial for sub-dword copies, but if doing
* a partial copy allows further copies, it should be done instead. */
bool partial_copy = (has_zero_use_bytes == 0xf) || (has_zero_use_bytes == 0xf0);
for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
if (partial_copy)
break;
for (uint16_t i = 0; i < copy.second.bytes; i++) {
/* distance might underflow */
unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
if (distance < it->second.bytes)
copy.second.uses[i] -= 1;
if (distance < it->second.bytes && copy.second.uses[i] == 1 &&
!it->second.uses[distance])
partial_copy = true;
}
}
}
if (!partial_copy) {
++it;
continue;
}
} else {
/* full target reg is used: register swapping needed */
++it;
continue;
}
}
bool did_copy = do_copy(ctx, bld, it->second, &preserve_scc);
/* reduce the number of uses of the operand reg by one */
if (did_copy && !it->second.op.isConstant()) {
for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
for (uint16_t i = 0; i < copy.second.bytes; i++) {
/* distance might underflow */
unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
if (distance < it->second.bytes && !it->second.uses[distance])
copy.second.uses[i] -= 1;
}
}
}
if (it->second.is_used == 0) {
/* the target reg is not used as operand for any other copy, so we
* copied to all of it */
copy_map.erase(it);
it = copy_map.begin();
ctx->program->statistics[statistic_copies]++;
continue;
} else {
/* the target reg is used as operand, check the next entry */
++it;
/* we only performed some portions of this copy, so split it to only
* leave the portions that still need to be done */
copy_operation original = it->second; /* the map insertion below can overwrite this */
copy_map.erase(it);
for (unsigned offset = 0; offset < original.bytes;) {
if (original.uses[offset] == 0) {
offset++;
continue;
}
Definition def;
Operand op;
split_copy(offset, &def, &op, original, false, 8);
copy_operation copy = {op, def, def.bytes()};
for (unsigned i = 0; i < copy.bytes; i++)
copy.uses[i] = original.uses[i + offset];
copy_map[def.physReg()] = copy;
offset += def.bytes();
}
it = copy_map.begin();
}
}
@@ -876,68 +1044,69 @@ void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context*
return;
/* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
for (it = copy_map.begin(); it != copy_map.end(); ++it) {
assert(it->second.op.isFixed());
if (it->first == it->second.op.physReg())
continue;
unsigned largest = 0;
for (const std::pair<PhysReg, copy_operation>& op : copy_map)
largest = MAX2(largest, op.second.bytes);
while (!copy_map.empty()) {
/* Perform larger swaps first, so that we don't have to split the uses of
* registers we swap (we don't have to because of alignment restrictions) and
* larger swaps swaps can make other swaps unnecessary. */
auto it = copy_map.begin();
for (auto it2 = copy_map.begin(); it2 != copy_map.end(); ++it2) {
if (it2->second.bytes > it->second.bytes) {
it = it2;
if (it->second.bytes == largest)
break;
}
}
/* should already be done */
assert(!it->second.op.isConstant());
assert(it->second.op.isFixed());
assert(it->second.def.regClass() == it->second.op.regClass());
if (it->first == it->second.op.physReg()) {
copy_map.erase(it);
continue;
}
if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
assert(!(it->second.def.physReg() == pi->scratch_sgpr));
/* to resolve the cycle, we have to swap the src reg with the dst reg */
copy_operation swap = it->second;
assert(swap.op.regClass() == swap.def.regClass());
Operand def_as_op = Operand(swap.def.physReg(), swap.def.regClass());
Definition op_as_def = Definition(swap.op.physReg(), swap.op.regClass());
if (chip_class >= GFX9 && swap.def.regClass() == v1) {
bld.vop1(aco_opcode::v_swap_b32, swap.def, op_as_def, swap.op, def_as_op);
ctx->program->statistics[statistic_copies]++;
} else if (swap.def.regClass() == v1) {
bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
ctx->program->statistics[statistic_copies] += 3;
} else if (swap.op.physReg() == scc || swap.def.physReg() == scc) {
/* we need to swap scc and another sgpr */
assert(!preserve_scc);
do_swap(ctx, bld, swap, preserve_scc, pi);
PhysReg other = swap.op.physReg() == scc ? swap.def.physReg() : swap.op.physReg();
/* remove from map */
copy_map.erase(it);
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
ctx->program->statistics[statistic_copies] += 3;
} else if (swap.def.regClass() == s1) {
if (preserve_scc) {
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), swap.op);
bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
bld.sop1(aco_opcode::s_mov_b32, swap.def, Operand(pi->scratch_sgpr, s1));
} else {
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, swap.def, Definition(scc, s1), swap.op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
}
ctx->program->statistics[statistic_copies] += 3;
} else {
bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
ctx->program->statistics[statistic_copies] += 3;
assert(swap.def.regClass().is_subdword());
assert(false && "Subdword swaps not yet implemented.");
}
/* change the operand reg of the target's use */
assert(swap.is_used == 0x01010101lu); // each 1 use per byte
target = it;
for (++target; target != copy_map.end(); ++target) {
if (target->second.op.physReg() == it->first) {
/* change the operand reg of the target's use and split uses if needed */
target = copy_map.begin();
uint32_t bytes_left = u_bit_consecutive(0, swap.bytes);
for (; target != copy_map.end(); ++target) {
if (target->second.op.physReg() == swap.def.physReg() && swap.bytes == target->second.bytes) {
target->second.op.setFixed(swap.op.physReg());
break;
}
uint32_t imask = get_intersection_mask(swap.def.physReg().reg_b, swap.bytes,
target->second.op.physReg().reg_b, target->second.bytes);
if (!imask)
continue;
assert(target->second.bytes < swap.bytes);
PhysReg new_reg = swap.op.physReg();
new_reg.reg_b += target->second.op.physReg().reg_b - swap.def.physReg().reg_b;
target->second.op.setFixed(new_reg);
bytes_left &= ~imask;
if (!bytes_left)
break;
}
}
}

View File

@@ -149,6 +149,15 @@ class Format(Enum):
def get_builder_field_decls(self):
return [('%s %s=%s' % (f[0], f[1], f[2]) if f[2] != None else '%s %s' % (f[0], f[1])) for f in self.get_builder_fields()]
def get_builder_initialization(self, num_operands):
res = ''
if self == Format.SDWA:
for i in range(min(num_operands, 2)):
res += f'instr->sel[{i}] = op{i}.op.bytes() == 2 ? sdwa_uword : (op{i}.op.bytes() == 1 ? sdwa_ubyte : sdwa_udword);\n'
res += 'instr->dst_sel = def0.bytes() == 2 ? sdwa_uword : (def0.bytes() == 1 ? sdwa_ubyte : sdwa_udword);\n'
res += 'instr->dst_preserve = true;'
return res
class Opcode(object):
"""Class that represents all the information we have about the opcode