nir/algebraic: Rewrite bit-size inference

Before this commit, there were two copies of the algorithm: one in C,
that we would use to figure out what bit-size to give the replacement
expression, and one in Python, that emulated the C one and tried to
prove that the C algorithm would never fail to correctly assign
bit-sizes. That seemed pretty fragile, and likely to fall over if we
make any changes. Furthermore, the C code was really just recomputing
more-or-less the same thing as the Python code every time. Instead, we
can just store the results of the Python algorithm in the C
datastructure, and consult it to compute the bitsize of each value,
moving the "brains" entirely into Python. Since the Python algorithm no
longer has to match C, it's also a lot easier to change it to something
more closely approximating an actual type-inference algorithm. The
algorithm used is based on Hindley-Milner, although deliberately
weakened a little. It's a few more lines than the old one, judging by
the diffstat, but I think it's easier to verify that it's correct while
being as general as possible.

We could split this up into two changes, first making the C code use the
results of the Python code and then rewriting the Python algorithm, but
since the old algorithm never tracked which variable each equivalence
class, it would mean we'd have to add some non-trivial code which would
then get thrown away. I think it's better to see the final state all at
once, although I could also try splitting it up.

v2:
- Replace instances of "== None" and "!= None" with "is None" and
"is not None".
- Rename first_src to first_unsized_src
- Only merge the destination with the first unsized source, since the
sources have already been merged.
- Add a comment explaining what nir_search_value::bit_size now means.
v3:
- Fix one last instance to use "is not" instead of !=
- Don't try to be so clever when choosing which error message to print
based on whether we're in the search or replace expression.
- Fix trailing whitespace.

Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Dylan Baker <dylan@pnwbakers.com>
This commit is contained in:
Connor Abbott
2018-11-23 17:34:19 +01:00
parent 49ef890733
commit 29a1450e28
3 changed files with 326 additions and 375 deletions

View File

@@ -88,7 +88,7 @@ class Value(object):
__template = mako.template.Template("""
static const ${val.c_type} ${val.name} = {
{ ${val.type_enum}, ${val.bit_size} },
{ ${val.type_enum}, ${val.c_bit_size} },
% if isinstance(val, Constant):
${val.type()}, { ${val.hex()} /* ${val.value} */ },
% elif isinstance(val, Variable):
@@ -112,6 +112,40 @@ static const ${val.c_type} ${val.name} = {
def __str__(self):
return self.in_val
def get_bit_size(self):
"""Get the physical bit-size that has been chosen for this value, or if
there is none, the canonical value which currently represents this
bit-size class. Variables will be preferred, i.e. if there are any
variables in the equivalence class, the canonical value will be a
variable. We do this since we'll need to know which variable each value
is equivalent to when constructing the replacement expression. This is
the "find" part of the union-find algorithm.
"""
bit_size = self
while isinstance(bit_size, Value):
if bit_size._bit_size is None:
break
bit_size = bit_size._bit_size
if bit_size is not self:
self._bit_size = bit_size
return bit_size
def set_bit_size(self, other):
"""Make self.get_bit_size() return what other.get_bit_size() return
before calling this, or just "other" if it's a concrete bit-size. This is
the "union" part of the union-find algorithm.
"""
self_bit_size = self.get_bit_size()
other_bit_size = other if isinstance(other, int) else other.get_bit_size()
if self_bit_size == other_bit_size:
return
self_bit_size._bit_size = other_bit_size
@property
def type_enum(self):
return "nir_search_value_" + self.type_str
@@ -124,6 +158,21 @@ static const ${val.c_type} ${val.name} = {
def c_ptr(self):
return "&{0}.value".format(self.name)
@property
def c_bit_size(self):
bit_size = self.get_bit_size()
if isinstance(bit_size, int):
return bit_size
elif isinstance(bit_size, Variable):
return -bit_size.index - 1
else:
# If the bit-size class is neither a variable, nor an actual bit-size, then
# - If it's in the search expression, we don't need to check anything
# - If it's in the replace expression, either it's ambiguous (in which
# case we'd reject it), or it equals the bit-size of the search value
# We represent these cases with a 0 bit-size.
return 0
def render(self):
return self.__template.render(val=self,
Constant=Constant,
@@ -140,14 +189,14 @@ class Constant(Value):
if isinstance(val, (str)):
m = _constant_re.match(val)
self.value = ast.literal_eval(m.group('value'))
self.bit_size = int(m.group('bits')) if m.group('bits') else 0
self._bit_size = int(m.group('bits')) if m.group('bits') else None
else:
self.value = val
self.bit_size = 0
self._bit_size = None
if isinstance(self.value, bool):
assert self.bit_size == 0 or self.bit_size == 32
self.bit_size = 32
assert self._bit_size is None or self._bit_size == 32
self._bit_size = 32
def hex(self):
if isinstance(self.value, (bool)):
@@ -191,11 +240,11 @@ class Variable(Value):
self.is_constant = m.group('const') is not None
self.cond = m.group('cond')
self.required_type = m.group('type')
self.bit_size = int(m.group('bits')) if m.group('bits') else 0
self._bit_size = int(m.group('bits')) if m.group('bits') else None
if self.required_type == 'bool':
assert self.bit_size == 0 or self.bit_size == 32
self.bit_size = 32
assert self._bit_size is None or self._bit_size == 32
self._bit_size = 32
if self.required_type is not None:
assert self.required_type in ('float', 'bool', 'int', 'uint')
@@ -225,7 +274,7 @@ class Expression(Value):
assert m and m.group('opcode') is not None
self.opcode = m.group('opcode')
self.bit_size = int(m.group('bits')) if m.group('bits') else 0
self._bit_size = int(m.group('bits')) if m.group('bits') else None
self.inexact = m.group('inexact') is not None
self.cond = m.group('cond')
self.sources = [ Value.create(src, "{0}_{1}".format(name_base, i), varset)
@@ -235,40 +284,6 @@ class Expression(Value):
srcs = "\n".join(src.render() for src in self.sources)
return srcs + super(Expression, self).render()
class IntEquivalenceRelation(object):
"""A class representing an equivalence relation on integers.
Each integer has a canonical form which is the maximum integer to which it
is equivalent. Two integers are equivalent precisely when they have the
same canonical form.
The convention of maximum is explicitly chosen to make using it in
BitSizeValidator easier because it means that an actual bit_size (if any)
will always be the canonical form.
"""
def __init__(self):
self._remap = {}
def get_canonical(self, x):
"""Get the canonical integer corresponding to x."""
if x in self._remap:
return self.get_canonical(self._remap[x])
else:
return x
def add_equiv(self, a, b):
"""Add an equivalence and return the canonical form."""
c = max(self.get_canonical(a), self.get_canonical(b))
if a != c:
assert a < c
self._remap[a] = c
if b != c:
assert b < c
self._remap[b] = c
return c
class BitSizeValidator(object):
"""A class for validating bit sizes of expressions.
@@ -296,7 +311,7 @@ class BitSizeValidator(object):
inference can be ambiguous or contradictory. Consider, for instance, the
following transformation:
(('usub_borrow', a, b), ('b2i', ('ult', a, b)))
(('usub_borrow', a, b), ('b2i@32', ('ult', a, b)))
This transformation can potentially cause a problem because usub_borrow is
well-defined for any bit-size of integer. However, b2i always generates a
@@ -315,217 +330,250 @@ class BitSizeValidator(object):
generate any code. This ensures that bugs are caught at compile time
rather than at run time.
The basic operation of the validator is very similar to the bitsize_tree in
nir_search only a little more subtle. Instead of simply tracking bit
sizes, it tracks "bit classes" where each class is represented by an
integer. A value of 0 means we don't know anything yet, positive values
are actual bit-sizes, and negative values are used to track equivalence
classes of sizes that must be the same but have yet to receive an actual
size. The first stage uses the bitsize_tree algorithm to assign bit
classes to each variable. If it ever comes across an inconsistency, it
assert-fails. Then the second stage uses that information to prove that
the resulting expression can always validly be constructed.
Each value maintains a "bit-size class", which is either an actual bit size
or an equivalence class with other values that must have the same bit size.
The validator works by combining bit-size classes with each other according
to the NIR rules outlined above, checking that there are no inconsistencies.
When doing this for the replacement expression, we make sure to never change
the equivalence class of any of the search values. We could make the example
transforms above work by doing some extra run-time checking of the search
expression, but we make the user specify those constraints themselves, to
avoid any surprises. Since the replacement bitsizes can only be connected to
the source bitsize via variables (variables must have the same bitsize in
the source and replacment expressions) or the roots of the expression (the
replacement expression must produce the same bit size as the search
expression), we prevent merging a variable with anything when processing the
replacement expression, or specializing the search bitsize
with anything. The former prevents
(('bcsel', a, b, 0), ('iand', a, b))
from being allowed, since we'd have to merge the bitsizes for a and b due to
the 'iand', while the latter prevents
(('usub_borrow', a, b), ('b2i@32', ('ult', a, b)))
from being allowed, since the search expression has the bit size of a and b,
which can't be specialized to 32 which is the bitsize of the replace
expression. It also prevents something like:
(('b2i', ('i2b', a)), ('ineq', a, 0))
since the bitsize of 'b2i', which can be anything, can't be specialized to
the bitsize of a.
After doing all this, we check that every subexpression of the replacement
was assigned a constant bitsize, the bitsize of a variable, or the bitsize
of the search expresssion, since those are the things that are known when
constructing the replacement expresssion. Finally, we record the bitsize
needed in nir_search_value so that we know what to do when building the
replacement expression.
"""
def __init__(self, varset):
self._num_classes = 0
self._var_classes = [0] * len(varset.names)
self._class_relation = IntEquivalenceRelation()
self._var_classes = [None] * len(varset.names)
def compare_bitsizes(self, a, b):
"""Determines which bitsize class is a specialization of the other, or
whether neither is. When we merge two different bitsizes, the
less-specialized bitsize always points to the more-specialized one, so
that calling get_bit_size() always gets you the most specialized bitsize.
The specialization partial order is given by:
- Physical bitsizes are always the most specialized, and a different
bitsize can never specialize another.
- In the search expression, variables can always be specialized to each
other and to physical bitsizes. In the replace expression, we disallow
this to avoid adding extra constraints to the search expression that
the user didn't specify.
- Expressions and constants without a bitsize can always be specialized to
each other and variables, but not the other way around.
We return -1 if a <= b (b can be specialized to a), 0 if a = b, 1 if a >= b,
and None if they are not comparable (neither a <= b nor b <= a).
"""
if isinstance(a, int):
if isinstance(b, int):
return 0 if a == b else None
elif isinstance(b, Variable):
return -1 if self.is_search else None
else:
return -1
elif isinstance(a, Variable):
if isinstance(b, int):
return 1 if self.is_search else None
elif isinstance(b, Variable):
return 0 if self.is_search or a.index == b.index else None
else:
return -1
else:
if isinstance(b, int):
return 1
elif isinstance(b, Variable):
return 1
else:
return 0
def unify_bit_size(self, a, b, error_msg):
"""Record that a must have the same bit-size as b. If both
have been assigned conflicting physical bit-sizes, call "error_msg" with
the bit-sizes of self and other to get a message and raise an error.
In the replace expression, disallow merging variables with other
variables and physical bit-sizes as well.
"""
a_bit_size = a.get_bit_size()
b_bit_size = b if isinstance(b, int) else b.get_bit_size()
cmp_result = self.compare_bitsizes(a_bit_size, b_bit_size)
assert cmp_result is not None, \
error_msg(a_bit_size, b_bit_size)
if cmp_result < 0:
b_bit_size.set_bit_size(a)
elif not isinstance(a_bit_size, int):
a_bit_size.set_bit_size(b)
def merge_variables(self, val):
"""Perform the first part of type inference by merging all the different
uses of the same variable. We always do this as if we're in the search
expression, even if we're actually not, since otherwise we'd get errors
if the search expression specified some constraint but the replace
expression didn't, because we'd be merging a variable and a constant.
"""
if isinstance(val, Variable):
if self._var_classes[val.index] is None:
self._var_classes[val.index] = val
else:
other = self._var_classes[val.index]
self.unify_bit_size(other, val,
lambda other_bit_size, bit_size:
'Variable {} has conflicting bit size requirements: ' \
'it must have bit size {} and {}'.format(
val.var_name, other_bit_size, bit_size))
elif isinstance(val, Expression):
for src in val.sources:
self.merge_variables(src)
def validate_value(self, val):
"""Validate the an expression by performing classic Hindley-Milner
type inference on bitsizes. This will detect if there are any conflicting
requirements, and unify variables so that we know which variables must
have the same bitsize. If we're operating on the replace expression, we
will refuse to merge different variables together or merge a variable
with a constant, in order to prevent surprises due to rules unexpectedly
not matching at runtime.
"""
if not isinstance(val, Expression):
return
nir_op = opcodes[val.opcode]
assert len(val.sources) == nir_op.num_inputs, \
"Expression {} has {} sources, expected {}".format(
val, len(val.sources), nir_op.num_inputs)
for src in val.sources:
self.validate_value(src)
dst_type_bits = type_bits(nir_op.output_type)
# First, unify all the sources. That way, an error coming up because two
# sources have an incompatible bit-size won't produce an error message
# involving the destination.
first_unsized_src = None
for src_type, src in zip(nir_op.input_types, val.sources):
src_type_bits = type_bits(src_type)
if src_type_bits == 0:
if first_unsized_src is None:
first_unsized_src = src
continue
if self.is_search:
self.unify_bit_size(first_unsized_src, src,
lambda first_unsized_src_bit_size, src_bit_size:
'Source {} of {} must have bit size {}, while source {} ' \
'must have incompatible bit size {}'.format(
first_unsized_src, val, first_unsized_src_bit_size,
src, src_bit_size))
else:
self.unify_bit_size(first_unsized_src, src,
lambda first_unsized_src_bit_size, src_bit_size:
'Sources {} (bit size of {}) and {} (bit size of {}) ' \
'of {} may not have the same bit size when building the ' \
'replacement expression.'.format(
first_unsized_src, first_unsized_src_bit_size, src,
src_bit_size, val))
else:
if self.is_search:
self.unify_bit_size(src, src_type_bits,
lambda src_bit_size, unused:
'{} must have {} bits, but as a source of nir_op_{} '\
'it must have {} bits'.format(
src, src_bit_size, nir_op.name, src_type_bits))
else:
self.unify_bit_size(src, src_type_bits,
lambda src_bit_size, unused:
'{} has the bit size of {}, but as a source of ' \
'nir_op_{} it must have {} bits, which may not be the ' \
'same'.format(
src, src_bit_size, nir_op.name, src_type_bits))
if dst_type_bits == 0:
if first_unsized_src is not None:
if self.is_search:
self.unify_bit_size(val, first_unsized_src,
lambda val_bit_size, src_bit_size:
'{} must have the bit size of {}, while its source {} ' \
'must have incompatible bit size {}'.format(
val, val_bit_size, first_unsized_src, src_bit_size))
else:
self.unify_bit_size(val, first_unsized_src,
lambda val_bit_size, src_bit_size:
'{} must have {} bits, but its source {} ' \
'(bit size of {}) may not have that bit size ' \
'when building the replacement.'.format(
val, val_bit_size, first_unsized_src, src_bit_size))
else:
self.unify_bit_size(val, dst_type_bits,
lambda dst_bit_size, unused:
'{} must have {} bits, but as a destination of nir_op_{} ' \
'it must have {} bits'.format(
val, dst_bit_size, nir_op.name, dst_type_bits))
def validate_replace(self, val, search):
bit_size = val.get_bit_size()
assert isinstance(bit_size, int) or isinstance(bit_size, Variable) or \
bit_size == search.get_bit_size(), \
'Ambiguous bit size for replacement value {}: ' \
'it cannot be deduced from a variable, a fixed bit size ' \
'somewhere, or the search expression.'.format(val)
if isinstance(val, Expression):
for src in val.sources:
self.validate_replace(src, search)
def validate(self, search, replace):
search_dst_class = self._propagate_bit_size_up(search)
if search_dst_class == 0:
search_dst_class = self._new_class()
self._propagate_bit_class_down(search, search_dst_class)
self.is_search = True
self.merge_variables(search)
self.merge_variables(replace)
self.validate_value(search)
replace_dst_class = self._validate_bit_class_up(replace)
if replace_dst_class != 0:
assert search_dst_class != 0, \
'Search expression matches any bit size but replace ' \
'expression can only generate {0}-bit values' \
.format(replace_dst_class)
self.is_search = False
self.validate_value(replace)
assert search_dst_class == replace_dst_class, \
'Search expression matches any {0}-bit values but replace ' \
'expression can only generates {1}-bit values' \
.format(search_dst_class, replace_dst_class)
# Check that search is always more specialized than replace. Note that
# we're doing this in replace mode, disallowing merging variables.
search_bit_size = search.get_bit_size()
replace_bit_size = replace.get_bit_size()
cmp_result = self.compare_bitsizes(search_bit_size, replace_bit_size)
self._validate_bit_class_down(replace, search_dst_class)
assert cmp_result is not None and cmp_result <= 0, \
'The search expression bit size {} and replace expression ' \
'bit size {} may not be the same'.format(
search_bit_size, replace_bit_size)
def _new_class(self):
self._num_classes += 1
return -self._num_classes
replace.set_bit_size(search)
def _set_var_bit_class(self, var, bit_class):
assert bit_class != 0
var_class = self._var_classes[var.index]
if var_class == 0:
self._var_classes[var.index] = bit_class
else:
canon_var_class = self._class_relation.get_canonical(var_class)
canon_bit_class = self._class_relation.get_canonical(bit_class)
assert canon_var_class < 0 or canon_bit_class < 0 or \
canon_var_class == canon_bit_class, \
'Variable {0} cannot be both {1}-bit and {2}-bit' \
.format(str(var), bit_class, var_class)
var_class = self._class_relation.add_equiv(var_class, bit_class)
self._var_classes[var.index] = var_class
def _get_var_bit_class(self, var):
return self._class_relation.get_canonical(self._var_classes[var.index])
def _propagate_bit_size_up(self, val):
if isinstance(val, (Constant, Variable)):
return val.bit_size
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
val.common_size = 0
for i in range(nir_op.num_inputs):
src_bits = self._propagate_bit_size_up(val.sources[i])
if src_bits == 0:
continue
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
assert src_bits == src_type_bits, \
'Source {0} of nir_op_{1} must be a {2}-bit value but ' \
'the only possible matched values are {3}-bit: {4}' \
.format(i, val.opcode, src_type_bits, src_bits, str(val))
else:
assert val.common_size == 0 or src_bits == val.common_size, \
'Expression cannot have both {0}-bit and {1}-bit ' \
'variable-width sources: {2}' \
.format(src_bits, val.common_size, str(val))
val.common_size = src_bits
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert val.bit_size == 0 or val.bit_size == dst_type_bits, \
'nir_op_{0} produces a {1}-bit result but a {2}-bit ' \
'result was requested' \
.format(val.opcode, dst_type_bits, val.bit_size)
return dst_type_bits
else:
if val.common_size != 0:
assert val.bit_size == 0 or val.bit_size == val.common_size, \
'Variable width expression musr be {0}-bit based on ' \
'the sources but a {1}-bit result was requested: {2}' \
.format(val.common_size, val.bit_size, str(val))
else:
val.common_size = val.bit_size
return val.common_size
def _propagate_bit_class_down(self, val, bit_class):
if isinstance(val, Constant):
assert val.bit_size == 0 or val.bit_size == bit_class, \
'Constant is {0}-bit but a {1}-bit value is required: {2}' \
.format(val.bit_size, bit_class, str(val))
elif isinstance(val, Variable):
assert val.bit_size == 0 or val.bit_size == bit_class, \
'Variable is {0}-bit but a {1}-bit value is required: {2}' \
.format(val.bit_size, bit_class, str(val))
self._set_var_bit_class(val, bit_class)
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert bit_class == 0 or bit_class == dst_type_bits, \
'nir_op_{0} produces a {1}-bit result but the parent ' \
'expression wants a {2}-bit value' \
.format(val.opcode, dst_type_bits, bit_class)
else:
assert val.common_size == 0 or val.common_size == bit_class, \
'Variable-width expression produces a {0}-bit result ' \
'based on the source widths but the parent expression ' \
'wants a {1}-bit value: {2}' \
.format(val.common_size, bit_class, str(val))
val.common_size = bit_class
if val.common_size:
common_class = val.common_size
elif nir_op.num_inputs:
# If we got here then we have no idea what the actual size is.
# Instead, we use a generic class
common_class = self._new_class()
for i in range(nir_op.num_inputs):
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
self._propagate_bit_class_down(val.sources[i], src_type_bits)
else:
self._propagate_bit_class_down(val.sources[i], common_class)
def _validate_bit_class_up(self, val):
if isinstance(val, Constant):
return val.bit_size
elif isinstance(val, Variable):
var_class = self._get_var_bit_class(val)
# By the time we get to validation, every variable should have a class
assert var_class != 0
# If we have an explicit size provided by the user, the variable
# *must* exactly match the search. It cannot be implicitly sized
# because otherwise we could end up with a conflict at runtime.
assert val.bit_size == 0 or val.bit_size == var_class
return var_class
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
val.common_class = 0
for i in range(nir_op.num_inputs):
src_class = self._validate_bit_class_up(val.sources[i])
if src_class == 0:
continue
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
assert src_class == src_type_bits
else:
assert val.common_class == 0 or src_class == val.common_class
val.common_class = src_class
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert val.bit_size == 0 or val.bit_size == dst_type_bits
return dst_type_bits
else:
if val.common_class != 0:
assert val.bit_size == 0 or val.bit_size == val.common_class
else:
val.common_class = val.bit_size
return val.common_class
def _validate_bit_class_down(self, val, bit_class):
# At this point, everything *must* have a bit class. Otherwise, we have
# a value we don't know how to define.
assert bit_class != 0
if isinstance(val, Constant):
assert val.bit_size == 0 or val.bit_size == bit_class
elif isinstance(val, Variable):
assert val.bit_size == 0 or val.bit_size == bit_class
elif isinstance(val, Expression):
nir_op = opcodes[val.opcode]
dst_type_bits = type_bits(nir_op.output_type)
if dst_type_bits != 0:
assert bit_class == dst_type_bits
else:
assert val.common_class == 0 or val.common_class == bit_class
val.common_class = bit_class
for i in range(nir_op.num_inputs):
src_type_bits = type_bits(nir_op.input_types[i])
if src_type_bits != 0:
self._validate_bit_class_down(val.sources[i], src_type_bits)
else:
self._validate_bit_class_down(val.sources[i], val.common_class)
self.validate_replace(replace, search)
_optimization_ids = itertools.count()

View File

@@ -118,7 +118,7 @@ match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
new_swizzle[i] = instr->src[src].swizzle[swizzle[i]];
/* If the value has a specific bit size and it doesn't match, bail */
if (value->bit_size &&
if (value->bit_size > 0 &&
nir_src_bit_size(instr->src[src].src) != value->bit_size)
return false;
@@ -228,7 +228,7 @@ match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
assert(instr->dest.dest.is_ssa);
if (expr->value.bit_size &&
if (expr->value.bit_size > 0 &&
instr->dest.dest.ssa.bit_size != expr->value.bit_size)
return false;
@@ -290,128 +290,21 @@ match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
}
}
typedef struct bitsize_tree {
unsigned num_srcs;
struct bitsize_tree *srcs[4];
unsigned common_size;
bool is_src_sized[4];
bool is_dest_sized;
unsigned dest_size;
unsigned src_size[4];
} bitsize_tree;
static bitsize_tree *
build_bitsize_tree(void *mem_ctx, struct match_state *state,
const nir_search_value *value)
{
bitsize_tree *tree = rzalloc(mem_ctx, bitsize_tree);
switch (value->type) {
case nir_search_value_expression: {
nir_search_expression *expr = nir_search_value_as_expression(value);
nir_op_info info = nir_op_infos[expr->opcode];
tree->num_srcs = info.num_inputs;
tree->common_size = 0;
for (unsigned i = 0; i < info.num_inputs; i++) {
tree->is_src_sized[i] = !!nir_alu_type_get_type_size(info.input_types[i]);
if (tree->is_src_sized[i])
tree->src_size[i] = nir_alu_type_get_type_size(info.input_types[i]);
tree->srcs[i] = build_bitsize_tree(mem_ctx, state, expr->srcs[i]);
}
tree->is_dest_sized = !!nir_alu_type_get_type_size(info.output_type);
if (tree->is_dest_sized)
tree->dest_size = nir_alu_type_get_type_size(info.output_type);
break;
}
case nir_search_value_variable: {
nir_search_variable *var = nir_search_value_as_variable(value);
tree->num_srcs = 0;
tree->is_dest_sized = true;
tree->dest_size = nir_src_bit_size(state->variables[var->variable].src);
break;
}
case nir_search_value_constant: {
tree->num_srcs = 0;
tree->is_dest_sized = false;
tree->common_size = 0;
break;
}
}
if (value->bit_size) {
assert(!tree->is_dest_sized || tree->dest_size == value->bit_size);
tree->common_size = value->bit_size;
}
return tree;
}
static unsigned
bitsize_tree_filter_up(bitsize_tree *tree)
replace_bitsize(const nir_search_value *value, unsigned search_bitsize,
struct match_state *state)
{
for (unsigned i = 0; i < tree->num_srcs; i++) {
unsigned src_size = bitsize_tree_filter_up(tree->srcs[i]);
if (src_size == 0)
continue;
if (tree->is_src_sized[i]) {
assert(src_size == tree->src_size[i]);
} else if (tree->common_size != 0) {
assert(src_size == tree->common_size);
tree->src_size[i] = src_size;
} else {
tree->common_size = src_size;
tree->src_size[i] = src_size;
}
}
if (tree->num_srcs && tree->common_size) {
if (tree->dest_size == 0)
tree->dest_size = tree->common_size;
else if (!tree->is_dest_sized)
assert(tree->dest_size == tree->common_size);
for (unsigned i = 0; i < tree->num_srcs; i++) {
if (!tree->src_size[i])
tree->src_size[i] = tree->common_size;
}
}
return tree->dest_size;
}
static void
bitsize_tree_filter_down(bitsize_tree *tree, unsigned size)
{
if (tree->dest_size)
assert(tree->dest_size == size);
else
tree->dest_size = size;
if (!tree->is_dest_sized) {
if (tree->common_size)
assert(tree->common_size == size);
else
tree->common_size = size;
}
for (unsigned i = 0; i < tree->num_srcs; i++) {
if (!tree->src_size[i]) {
assert(tree->common_size);
tree->src_size[i] = tree->common_size;
}
bitsize_tree_filter_down(tree->srcs[i], tree->src_size[i]);
}
if (value->bit_size > 0)
return value->bit_size;
if (value->bit_size < 0)
return nir_src_bit_size(state->variables[-value->bit_size - 1].src);
return search_bitsize;
}
static nir_alu_src
construct_value(nir_builder *build,
const nir_search_value *value,
unsigned num_components, bitsize_tree *bitsize,
unsigned num_components, unsigned search_bitsize,
struct match_state *state,
nir_instr *instr)
{
@@ -424,7 +317,7 @@ construct_value(nir_builder *build,
nir_alu_instr *alu = nir_alu_instr_create(build->shader, expr->opcode);
nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
bitsize->dest_size, NULL);
replace_bitsize(value, search_bitsize, state), NULL);
alu->dest.write_mask = (1 << num_components) - 1;
alu->dest.saturate = false;
@@ -443,7 +336,7 @@ construct_value(nir_builder *build,
num_components = nir_op_infos[alu->op].input_sizes[i];
alu->src[i] = construct_value(build, expr->srcs[i],
num_components, bitsize->srcs[i],
num_components, search_bitsize,
state, instr);
}
@@ -472,16 +365,17 @@ construct_value(nir_builder *build,
case nir_search_value_constant: {
const nir_search_constant *c = nir_search_value_as_constant(value);
unsigned bit_size = replace_bitsize(value, search_bitsize, state);
nir_ssa_def *cval;
switch (c->type) {
case nir_type_float:
cval = nir_imm_floatN_t(build, c->data.d, bitsize->dest_size);
cval = nir_imm_floatN_t(build, c->data.d, bit_size);
break;
case nir_type_int:
case nir_type_uint:
cval = nir_imm_intN_t(build, c->data.i, bitsize->dest_size);
cval = nir_imm_intN_t(build, c->data.i, bit_size);
break;
case nir_type_bool:
@@ -526,16 +420,12 @@ nir_replace_instr(nir_builder *build, nir_alu_instr *instr,
swizzle, &state))
return NULL;
void *bitsize_ctx = ralloc_context(NULL);
bitsize_tree *tree = build_bitsize_tree(bitsize_ctx, &state, replace);
bitsize_tree_filter_up(tree);
bitsize_tree_filter_down(tree, instr->dest.dest.ssa.bit_size);
build->cursor = nir_before_instr(&instr->instr);
nir_alu_src val = construct_value(build, replace,
instr->dest.dest.ssa.num_components,
tree, &state, &instr->instr);
instr->dest.dest.ssa.bit_size,
&state, &instr->instr);
/* Inserting a mov may be unnecessary. However, it's much easier to
* simply let copy propagation clean this up than to try to go through
@@ -551,7 +441,5 @@ nir_replace_instr(nir_builder *build, nir_alu_instr *instr,
*/
nir_instr_remove(&instr->instr);
ralloc_free(bitsize_ctx);
return ssa_val;
}

View File

@@ -43,7 +43,22 @@ typedef enum {
typedef struct {
nir_search_value_type type;
unsigned bit_size;
/**
* Bit size of the value. It is interpreted as follows:
*
* For a search expression:
* - If bit_size > 0, then the value only matches an SSA value with the
* given bit size.
* - If bit_size <= 0, then the value matches any size SSA value.
*
* For a replace expression:
* - If bit_size > 0, then the value is constructed with the given bit size.
* - If bit_size == 0, then the value is constructed with the same bit size
* as the search value.
* - If bit_size < 0, then the value is constructed with the same bit size
* as variable (-bit_size - 1).
*/
int bit_size;
} nir_search_value;
typedef struct {