intel/rt: Implement support for shader call payloads

Both traceRay() and executeCallable() take a payload parameter which
gets passed from the caller to the callee and which the callee can write
to pass data back to the caller.  We implement these by passing a
pointer to the data structure in the callee to the caller as the second
QWord on its stack.  Coming out of spirv_to_nir, the incoming call
payloads get the nir_var_shader_call_data variable mode allowing us to
easily identify them.  Outgoing call payloads get assigned the
nir_var_shader_temp mode and will have been turned into function_temp by
nir_lower_global_vars_to_local.  All we have to do is crawl the shader
looking for references to the nir_var_shader_call_data variable and
rewrite those to use the passed in pointer.  nir_lower_explicit_io will
do the rest for us.

Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7356>
This commit is contained in:
Jason Ekstrand
2020-09-03 20:20:22 -05:00
committed by Marge Bot
parent 72354b0e9d
commit 1f6ae809ef
3 changed files with 104 additions and 17 deletions

View File

@@ -22,7 +22,7 @@
*/
#include "brw_nir_rt.h"
#include "nir_builder.h"
#include "brw_nir_rt_builder.h"
static bool
resize_deref(nir_builder *b, nir_deref_instr *deref,
@@ -56,21 +56,57 @@ resize_deref(nir_builder *b, nir_deref_instr *deref,
}
static bool
resize_function_temp_derefs(nir_shader *shader)
lower_rt_io_derefs(nir_shader *shader)
{
nir_function_impl *impl = nir_shader_get_entrypoint(shader);
bool progress = false;
unsigned num_shader_call_vars = 0;
nir_foreach_variable_with_modes(var, shader, nir_var_shader_call_data)
num_shader_call_vars++;
/* At most one payload is allowed because it's an input. Technically, this
* is also true for hit attribute variables. However, after we inline an
* any-hit shader into an intersection shader, we can end up with multiple
* hit attribute variables. They'll end up mapping to a cast from the same
* base pointer so this is fine.
*/
assert(num_shader_call_vars <= 1);
nir_builder b;
nir_builder_init(&b, impl);
b.cursor = nir_before_cf_list(&impl->body);
nir_ssa_def *call_data_addr = NULL;
if (num_shader_call_vars > 0) {
assert(shader->scratch_size >= BRW_BTD_STACK_CALLEE_DATA_SIZE);
call_data_addr =
brw_nir_rt_load_scratch(&b, BRW_BTD_STACK_CALL_DATA_PTR_OFFSET, 8,
1, 64);
progress = true;
}
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (nir_deref_mode_is(deref, nir_var_shader_call_data)) {
deref->modes = nir_var_function_temp;
if (deref->deref_type == nir_deref_type_var) {
b.cursor = nir_before_instr(&deref->instr);
nir_deref_instr *cast =
nir_build_deref_cast(&b, call_data_addr,
nir_var_function_temp,
deref->var->type, 0);
nir_ssa_def_rewrite_uses(&deref->dest.ssa,
nir_src_for_ssa(&cast->dest.ssa));
nir_instr_remove(&deref->instr);
progress = true;
}
}
/* We're going to lower all function_temp memory to scratch using
* 64-bit addresses. We need to resize all our derefs first or else
@@ -92,17 +128,59 @@ resize_function_temp_derefs(nir_shader *shader)
return progress;
}
/** Lowers ray-tracing shader I/O and scratch access
*
* SPV_KHR_ray_tracing adds three new types of I/O, each of which need their
* own bit of special care:
*
* - Shader payload data: This is represented by the IncomingCallableData
* and IncomingRayPayload storage classes which are both represented by
* nir_var_call_data in NIR. There is at most one of these per-shader and
* they contain payload data passed down the stack from the parent shader
* when it calls executeCallable() or traceRay(). In our implementation,
* the actual storage lives in the calling shader's scratch space and we're
* passed a pointer to it.
*
* - Hit attribute data: This is represented by the HitAttribute storage
* class in SPIR-V and nir_var_ray_hit_attrib in NIR. For triangle
* geometry, it's supposed to contain two floats which are the barycentric
* coordinates. For AABS/procedural geometry, it contains the hit data
* written out by the intersection shader. In our implementation, it's a
* 64-bit pointer which points either to the u/v area of the relevant
* MemHit data structure or the space right after the HW ray stack entry.
*
* - Shader record buffer data: This allows read-only access to the data
* stored in the SBT right after the bindless shader handles. It's
* effectively a UBO with a magic address. Coming out of spirv_to_nir,
* we get a nir_intrinsic_load_shader_record_ptr which is cast to a
* nir_var_mem_global deref and all access happens through that. The
* shader_record_ptr system value is handled in brw_nir_lower_rt_intrinsics
* and we assume nir_lower_explicit_io is called elsewhere thanks to
* VK_KHR_buffer_device_address so there's really nothing to do here.
*
* We also handle lowering any remaining function_temp variables to scratch at
* this point. This gets rid of any remaining arrays and also takes care of
* the sending side of ray payloads where we pass pointers to a function_temp
* variable down the call stack.
*/
static void
lower_rt_scratch(nir_shader *nir)
lower_rt_io_and_scratch(nir_shader *nir)
{
/* First, we to ensure all the local variables have explicit types. */
/* First, we to ensure all the I/O variables have explicit types. Because
* these are shader-internal and don't come in from outside, they don't
* have an explicit memory layout and we have to assign them one.
*/
NIR_PASS_V(nir, nir_lower_vars_to_explicit_types,
nir_var_function_temp,
nir_var_function_temp |
nir_var_shader_call_data,
glsl_get_natural_size_align_bytes);
NIR_PASS_V(nir, resize_function_temp_derefs);
/* Now patch any derefs to I/O vars */
NIR_PASS_V(nir, lower_rt_io_derefs);
/* Now, lower those variables to 64-bit global memory access */
/* Finally, lower any remaining function_temp access to 64-bit global
* memory access.
*/
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_function_temp,
nir_address_format_64bit_global);
}
@@ -112,7 +190,7 @@ brw_nir_lower_raygen(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_RAYGEN);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_scratch(nir);
lower_rt_io_and_scratch(nir);
}
void
@@ -120,7 +198,7 @@ brw_nir_lower_any_hit(nir_shader *nir, const struct gen_device_info *devinfo)
{
assert(nir->info.stage == MESA_SHADER_ANY_HIT);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_scratch(nir);
lower_rt_io_and_scratch(nir);
}
void
@@ -128,7 +206,7 @@ brw_nir_lower_closest_hit(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_CLOSEST_HIT);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_scratch(nir);
lower_rt_io_and_scratch(nir);
}
void
@@ -136,7 +214,7 @@ brw_nir_lower_miss(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_MISS);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_scratch(nir);
lower_rt_io_and_scratch(nir);
}
void
@@ -144,7 +222,7 @@ brw_nir_lower_callable(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_CALLABLE);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_scratch(nir);
lower_rt_io_and_scratch(nir);
}
void
@@ -155,5 +233,5 @@ brw_nir_lower_combined_intersection_any_hit(nir_shader *intersection,
assert(intersection->info.stage == MESA_SHADER_INTERSECTION);
assert(any_hit == NULL || any_hit->info.stage == MESA_SHADER_ANY_HIT);
NIR_PASS_V(intersection, brw_nir_lower_shader_returns);
lower_rt_scratch(intersection);
lower_rt_io_and_scratch(intersection);
}