anv: split image view from anv_image.c

Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Acked-by: Ivan Briano <ivan.briano@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30285>
This commit is contained in:
Lionel Landwerlin
2024-07-21 11:55:19 +03:00
committed by Marge Bot
parent eff01c46d8
commit 1908d2c171
3 changed files with 535 additions and 529 deletions

View File

@@ -3231,535 +3231,6 @@ anv_layout_has_untracked_aux_writes(const struct intel_device_info * const devin
return true;
}
static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle,
struct isl_swizzle format_swizzle)
{
switch (swizzle) {
case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
default:
unreachable("Invalid swizzle");
}
}
void
anv_image_fill_surface_state(struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const struct isl_view *view_in,
isl_surf_usage_flags_t view_usage,
enum isl_aux_usage aux_usage,
const union isl_color_value *clear_color,
enum anv_image_view_state_flags flags,
struct anv_surface_state *state_inout)
{
uint32_t plane = anv_image_aspect_to_plane(image, aspect);
if (image->emu_plane_format != VK_FORMAT_UNDEFINED) {
const uint16_t view_bpb = isl_format_get_layout(view_in->format)->bpb;
const uint16_t plane_bpb = isl_format_get_layout(
image->planes[plane].primary_surface.isl.format)->bpb;
/* We should redirect to the hidden plane when the original view format
* is compressed or when the view usage is storage. But we don't always
* have visibility to the original view format so we also check for size
* compatibility.
*/
if (isl_format_is_compressed(view_in->format) ||
(view_usage & ISL_SURF_USAGE_STORAGE_BIT) ||
view_bpb != plane_bpb) {
plane = image->n_planes;
assert(isl_format_get_layout(
image->planes[plane].primary_surface.isl.format)->bpb ==
view_bpb);
}
}
const struct anv_surface *surface = &image->planes[plane].primary_surface,
*aux_surface = &image->planes[plane].aux_surface;
struct isl_view view = *view_in;
view.usage |= view_usage;
if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
view.swizzle = anv_swizzle_for_render(view.swizzle);
/* If this is a HiZ buffer we can sample from with a programmable clear
* value (SKL+), define the clear value to the optimal constant.
*/
union isl_color_value default_clear_color = { .u32 = { 0, } };
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT)
default_clear_color.f32[0] = ANV_HZ_FC_VAL;
if (!clear_color)
clear_color = &default_clear_color;
const struct anv_address address =
anv_image_address(image, &surface->memory_range);
void *surface_state_map = state_inout->state_data.data;
const struct isl_surf *isl_surf = &surface->isl;
struct isl_surf tmp_surf;
uint64_t offset_B = 0;
uint32_t tile_x_sa = 0, tile_y_sa = 0;
if (isl_format_is_compressed(surface->isl.format) &&
!isl_format_is_compressed(view.format)) {
/* We're creating an uncompressed view of a compressed surface. This is
* allowed but only for a single level/layer.
*/
assert(surface->isl.samples == 1);
assert(view.levels == 1);
ASSERTED bool ok =
isl_surf_get_uncompressed_surf(&device->isl_dev, isl_surf, &view,
&tmp_surf, &view,
&offset_B, &tile_x_sa, &tile_y_sa);
assert(ok);
isl_surf = &tmp_surf;
}
state_inout->address = anv_address_add(address, offset_B);
struct anv_address aux_address = ANV_NULL_ADDRESS;
if (aux_usage != ISL_AUX_USAGE_NONE)
aux_address = anv_image_address(image, &aux_surface->memory_range);
state_inout->aux_address = aux_address;
struct anv_address clear_address = ANV_NULL_ADDRESS;
if (device->info->ver >= 10 && isl_aux_usage_has_fast_clears(aux_usage)) {
clear_address = anv_image_get_clear_color_addr(device, image, aspect);
}
state_inout->clear_address = clear_address;
if (image->vk.create_flags & VK_IMAGE_CREATE_PROTECTED_BIT)
view_usage |= ISL_SURF_USAGE_PROTECTED_BIT;
isl_surf_fill_state(&device->isl_dev, surface_state_map,
.surf = isl_surf,
.view = &view,
.address = anv_address_physical(state_inout->address),
.clear_color = *clear_color,
.aux_surf = &aux_surface->isl,
.aux_usage = aux_usage,
.aux_address = anv_address_physical(aux_address),
.clear_address = anv_address_physical(clear_address),
.use_clear_address = !anv_address_is_null(clear_address),
.mocs = anv_mocs(device, state_inout->address.bo,
view_usage),
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
/* Assume robustness with EXT_pipeline_robustness
* because this can be turned on/off per pipeline and
* we have no visibility on this here.
*/
.robust_image_access =
device->vk.enabled_features.robustImageAccess ||
device->vk.enabled_features.robustImageAccess2 ||
device->vk.enabled_extensions.EXT_pipeline_robustness);
/* With the exception of gfx8, the bottom 12 bits of the MCS base address
* are used to store other information. This should be ok, however, because
* the surface buffer addresses are always 4K page aligned.
*/
if (!anv_address_is_null(aux_address)) {
uint32_t *aux_addr_dw = surface_state_map +
device->isl_dev.ss.aux_addr_offset;
assert((aux_address.offset & 0xfff) == 0);
state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
}
if (device->info->ver >= 10 && clear_address.bo) {
uint32_t *clear_addr_dw = surface_state_map +
device->isl_dev.ss.clear_color_state_offset;
assert((clear_address.offset & 0x3f) == 0);
state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
}
if (state_inout->state.map)
memcpy(state_inout->state.map, surface_state_map, ANV_SURFACE_STATE_SIZE);
}
static uint32_t
anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
{
anv_assert_valid_aspect_set(aspect_mask);
return util_bitcount(aspect_mask);
}
bool
anv_can_hiz_clear_ds_view(struct anv_device *device,
const struct anv_image_view *iview,
VkImageLayout layout,
VkImageAspectFlags clear_aspects,
float depth_clear_value,
VkRect2D render_area,
const VkQueueFlagBits queue_flags)
{
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return false;
/* If we're just clearing stencil, we can always HiZ clear */
if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return true;
/* We must have depth in order to have HiZ */
if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return false;
const enum isl_aux_usage clear_aux_usage =
anv_layout_to_aux_usage(device->info, iview->image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
layout, queue_flags);
if (!blorp_can_hiz_clear_depth(device->info,
&iview->image->planes[0].primary_surface.isl,
clear_aux_usage,
iview->planes[0].isl.base_level,
iview->planes[0].isl.base_array_layer,
render_area.offset.x,
render_area.offset.y,
render_area.offset.x +
render_area.extent.width,
render_area.offset.y +
render_area.extent.height))
return false;
if (depth_clear_value != ANV_HZ_FC_VAL)
return false;
/* If we got here, then we can fast clear */
return true;
}
static bool
isl_color_value_requires_conversion(union isl_color_value color,
const struct isl_surf *surf,
const struct isl_view *view)
{
if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle))
return false;
uint32_t surf_pack[4] = { 0, 0, 0, 0 };
isl_color_value_pack(&color, surf->format, surf_pack);
uint32_t view_pack[4] = { 0, 0, 0, 0 };
union isl_color_value swiz_color =
isl_color_value_swizzle_inv(color, view->swizzle);
isl_color_value_pack(&swiz_color, view->format, view_pack);
return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0;
}
bool
anv_can_fast_clear_color_view(struct anv_device *device,
struct anv_image_view *iview,
VkImageLayout layout,
union isl_color_value clear_color,
uint32_t num_layers,
VkRect2D render_area,
const VkQueueFlagBits queue_flags)
{
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return false;
if (iview->planes[0].isl.base_array_layer >=
anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
iview->planes[0].isl.base_level))
return false;
/* Start by getting the fast clear type. We use the first subpass
* layout here because we don't want to fast-clear if the first subpass
* to use the attachment can't handle fast-clears.
*/
enum anv_fast_clear_type fast_clear_type =
anv_layout_to_fast_clear_type(device->info, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
layout, queue_flags);
switch (fast_clear_type) {
case ANV_FAST_CLEAR_NONE:
return false;
case ANV_FAST_CLEAR_DEFAULT_VALUE:
if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format))
return false;
break;
case ANV_FAST_CLEAR_ANY:
break;
}
/* Potentially, we could do partial fast-clears but doing so has crazy
* alignment restrictions. It's easier to just restrict to full size
* fast clears for now.
*/
if (render_area.offset.x != 0 ||
render_area.offset.y != 0 ||
render_area.extent.width != iview->vk.extent.width ||
render_area.extent.height != iview->vk.extent.height)
return false;
/* If the clear color is one that would require non-trivial format
* conversion on resolve, we don't bother with the fast clear. This
* shouldn't be common as most clear colors are 0/1 and the most common
* format re-interpretation is for sRGB.
*/
if (isl_color_value_requires_conversion(clear_color,
&iview->image->planes[0].primary_surface.isl,
&iview->planes[0].isl)) {
anv_perf_warn(VK_LOG_OBJS(&iview->vk.base),
"Cannot fast-clear to colors which would require "
"format conversion on resolve");
return false;
}
/* We only allow fast clears to the first slice of an image (level 0,
* layer 0) and only for the entire slice. This guarantees us that, at
* any given time, there is only one clear color on any given image at
* any given time. At the time of our testing (Jan 17, 2018), there
* were no known applications which would benefit from fast-clearing
* more than just the first slice.
*/
if (iview->planes[0].isl.base_level > 0 ||
iview->planes[0].isl.base_array_layer > 0) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Rendering with multi-lod or multi-layer framebuffer "
"with LOAD_OP_LOAD and baseMipLevel > 0 or "
"baseArrayLayer > 0. Not fast clearing.");
return false;
}
if (num_layers > 1) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Rendering to a multi-layer framebuffer with "
"LOAD_OP_CLEAR. Only fast-clearing the first slice");
}
/* Wa_18020603990 - slow clear surfaces up to 256x256, 32bpp. */
if (intel_needs_workaround(device->info, 18020603990)) {
const struct anv_surface *anv_surf =
&iview->image->planes->primary_surface;
if (isl_format_get_layout(anv_surf->isl.format)->bpb <= 32 &&
anv_surf->isl.logical_level0_px.w <= 256 &&
anv_surf->isl.logical_level0_px.h <= 256)
return false;
}
/* On gfx12.0, CCS fast clears don't seem to cover the correct portion of
* the aux buffer when the pitch is not 512B-aligned.
*/
if (device->info->verx10 == 120 &&
iview->image->planes->primary_surface.isl.samples == 1 &&
iview->image->planes->primary_surface.isl.row_pitch_B % 512) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Pitch not 512B-aligned. Slow clearing surface.");
return false;
}
/* Disable sRGB fast-clears for non-0/1 color values on Gfx9. For texturing
* and draw calls, HW expects the clear color to be in two different color
* spaces after sRGB fast-clears - sRGB in the former and linear in the
* latter. By limiting the allowable values to 0/1, both color space
* requirements are satisfied.
*
* Gfx11+ is fine as the fast clear generate 2 colors at the clear color
* address, raw & converted such that all fixed functions can find the
* value they need.
*/
if (device->info->ver == 9 &&
isl_format_is_srgb(iview->planes[0].isl.format) &&
!isl_color_value_is_zero_one(clear_color,
iview->planes[0].isl.format))
return false;
return true;
}
void
anv_image_view_init(struct anv_device *device,
struct anv_image_view *iview,
const VkImageViewCreateInfo *pCreateInfo,
struct anv_state_stream *surface_state_stream)
{
ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
vk_image_view_init(&device->vk, &iview->vk, false, pCreateInfo);
iview->image = image;
iview->n_planes = anv_image_aspect_get_planes(iview->vk.aspects);
iview->use_surface_state_stream = surface_state_stream != NULL;
/* Now go through the underlying image selected planes and map them to
* planes in the image view.
*/
anv_foreach_image_aspect_bit(iaspect_bit, image, iview->vk.aspects) {
const uint32_t vplane =
anv_aspect_to_plane(iview->vk.aspects, 1UL << iaspect_bit);
VkFormat view_format = iview->vk.view_format;
if (anv_is_format_emulated(device->physical, view_format)) {
assert(image->emu_plane_format != VK_FORMAT_UNDEFINED);
view_format =
anv_get_emulation_format(device->physical, view_format);
}
const struct anv_format_plane format = anv_get_format_plane(
device->info, view_format, vplane, image->vk.tiling);
iview->planes[vplane].isl = (struct isl_view) {
.format = format.isl_format,
.base_level = iview->vk.base_mip_level,
.levels = iview->vk.level_count,
.base_array_layer = iview->vk.base_array_layer,
.array_len = iview->vk.layer_count,
.min_lod_clamp = iview->vk.min_lod,
.swizzle = {
.r = remap_swizzle(iview->vk.swizzle.r, format.swizzle),
.g = remap_swizzle(iview->vk.swizzle.g, format.swizzle),
.b = remap_swizzle(iview->vk.swizzle.b, format.swizzle),
.a = remap_swizzle(iview->vk.swizzle.a, format.swizzle),
},
};
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
iview->planes[vplane].isl.base_array_layer = 0;
iview->planes[vplane].isl.array_len = iview->vk.extent.depth;
}
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
} else {
iview->planes[vplane].isl.usage = 0;
}
if (iview->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
iview->planes[vplane].optimal_sampler.state =
anv_device_maybe_alloc_surface_state(device, surface_state_stream);
iview->planes[vplane].general_sampler.state =
anv_device_maybe_alloc_surface_state(device, surface_state_stream);
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_IMAGE_LAYOUT_GENERAL,
VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT);
enum isl_aux_usage optimal_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
optimal_aux_usage, NULL,
ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
&iview->planes[vplane].optimal_sampler);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
general_aux_usage, NULL,
0,
&iview->planes[vplane].general_sampler);
}
/* NOTE: This one needs to go last since it may stomp isl_view.format */
if (iview->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT) {
struct isl_view storage_view = iview->planes[vplane].isl;
if (iview->vk.view_type == VK_IMAGE_VIEW_TYPE_3D) {
storage_view.base_array_layer = iview->vk.storage.z_slice_offset;
storage_view.array_len = iview->vk.storage.z_slice_count;
}
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_LAYOUT_GENERAL,
VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT);
iview->planes[vplane].storage.state =
anv_device_maybe_alloc_surface_state(device, surface_state_stream);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&storage_view,
ISL_SURF_USAGE_STORAGE_BIT,
general_aux_usage, NULL,
0,
&iview->planes[vplane].storage);
}
}
}
void
anv_image_view_finish(struct anv_image_view *iview)
{
struct anv_device *device =
container_of(iview->vk.base.device, struct anv_device, vk);
if (!iview->use_surface_state_stream) {
for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
if (iview->planes[plane].optimal_sampler.state.alloc_size) {
anv_state_pool_free(&device->bindless_surface_state_pool,
iview->planes[plane].optimal_sampler.state);
}
if (iview->planes[plane].general_sampler.state.alloc_size) {
anv_state_pool_free(&device->bindless_surface_state_pool,
iview->planes[plane].general_sampler.state);
}
if (iview->planes[plane].storage.state.alloc_size) {
anv_state_pool_free(&device->bindless_surface_state_pool,
iview->planes[plane].storage.state);
}
}
}
vk_image_view_finish(&iview->vk);
}
VkResult
anv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_image_view *iview;
iview = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*iview), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (iview == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
anv_image_view_init(device, iview, pCreateInfo, NULL);
*pView = anv_image_view_to_handle(iview);
return VK_SUCCESS;
}
void
anv_DestroyImageView(VkDevice _device, VkImageView _iview,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_image_view, iview, _iview);
if (!iview)
return;
anv_image_view_finish(iview);
vk_free2(&iview->vk.base.device->alloc, pAllocator, iview);
}
void anv_GetRenderingAreaGranularityKHR(
VkDevice _device,
const VkRenderingAreaInfoKHR* pRenderingAreaInfo,

View File

@@ -0,0 +1,534 @@
/* Copyright © 2024 Intel Corporation
* SPDX-License-Identifier: MIT
*/
#include "anv_private.h"
static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle,
struct isl_swizzle format_swizzle)
{
switch (swizzle) {
case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
default:
unreachable("Invalid swizzle");
}
}
void
anv_image_fill_surface_state(struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const struct isl_view *view_in,
isl_surf_usage_flags_t view_usage,
enum isl_aux_usage aux_usage,
const union isl_color_value *clear_color,
enum anv_image_view_state_flags flags,
struct anv_surface_state *state_inout)
{
uint32_t plane = anv_image_aspect_to_plane(image, aspect);
if (image->emu_plane_format != VK_FORMAT_UNDEFINED) {
const uint16_t view_bpb = isl_format_get_layout(view_in->format)->bpb;
const uint16_t plane_bpb = isl_format_get_layout(
image->planes[plane].primary_surface.isl.format)->bpb;
/* We should redirect to the hidden plane when the original view format
* is compressed or when the view usage is storage. But we don't always
* have visibility to the original view format so we also check for size
* compatibility.
*/
if (isl_format_is_compressed(view_in->format) ||
(view_usage & ISL_SURF_USAGE_STORAGE_BIT) ||
view_bpb != plane_bpb) {
plane = image->n_planes;
assert(isl_format_get_layout(
image->planes[plane].primary_surface.isl.format)->bpb ==
view_bpb);
}
}
const struct anv_surface *surface = &image->planes[plane].primary_surface,
*aux_surface = &image->planes[plane].aux_surface;
struct isl_view view = *view_in;
view.usage |= view_usage;
if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
view.swizzle = anv_swizzle_for_render(view.swizzle);
/* If this is a HiZ buffer we can sample from with a programmable clear
* value (SKL+), define the clear value to the optimal constant.
*/
union isl_color_value default_clear_color = { .u32 = { 0, } };
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT)
default_clear_color.f32[0] = ANV_HZ_FC_VAL;
if (!clear_color)
clear_color = &default_clear_color;
const struct anv_address address =
anv_image_address(image, &surface->memory_range);
void *surface_state_map = state_inout->state_data.data;
const struct isl_surf *isl_surf = &surface->isl;
struct isl_surf tmp_surf;
uint64_t offset_B = 0;
uint32_t tile_x_sa = 0, tile_y_sa = 0;
if (isl_format_is_compressed(surface->isl.format) &&
!isl_format_is_compressed(view.format)) {
/* We're creating an uncompressed view of a compressed surface. This is
* allowed but only for a single level/layer.
*/
assert(surface->isl.samples == 1);
assert(view.levels == 1);
ASSERTED bool ok =
isl_surf_get_uncompressed_surf(&device->isl_dev, isl_surf, &view,
&tmp_surf, &view,
&offset_B, &tile_x_sa, &tile_y_sa);
assert(ok);
isl_surf = &tmp_surf;
}
state_inout->address = anv_address_add(address, offset_B);
struct anv_address aux_address = ANV_NULL_ADDRESS;
if (aux_usage != ISL_AUX_USAGE_NONE)
aux_address = anv_image_address(image, &aux_surface->memory_range);
state_inout->aux_address = aux_address;
struct anv_address clear_address = ANV_NULL_ADDRESS;
if (device->info->ver >= 10 && isl_aux_usage_has_fast_clears(aux_usage)) {
clear_address = anv_image_get_clear_color_addr(device, image, aspect);
}
state_inout->clear_address = clear_address;
if (image->vk.create_flags & VK_IMAGE_CREATE_PROTECTED_BIT)
view_usage |= ISL_SURF_USAGE_PROTECTED_BIT;
isl_surf_fill_state(&device->isl_dev, surface_state_map,
.surf = isl_surf,
.view = &view,
.address = anv_address_physical(state_inout->address),
.clear_color = *clear_color,
.aux_surf = &aux_surface->isl,
.aux_usage = aux_usage,
.aux_address = anv_address_physical(aux_address),
.clear_address = anv_address_physical(clear_address),
.use_clear_address = !anv_address_is_null(clear_address),
.mocs = anv_mocs(device, state_inout->address.bo,
view_usage),
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
/* Assume robustness with EXT_pipeline_robustness
* because this can be turned on/off per pipeline and
* we have no visibility on this here.
*/
.robust_image_access =
device->vk.enabled_features.robustImageAccess ||
device->vk.enabled_features.robustImageAccess2 ||
device->vk.enabled_extensions.EXT_pipeline_robustness);
/* With the exception of gfx8, the bottom 12 bits of the MCS base address
* are used to store other information. This should be ok, however, because
* the surface buffer addresses are always 4K page aligned.
*/
if (!anv_address_is_null(aux_address)) {
uint32_t *aux_addr_dw = surface_state_map +
device->isl_dev.ss.aux_addr_offset;
assert((aux_address.offset & 0xfff) == 0);
state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
}
if (device->info->ver >= 10 && clear_address.bo) {
uint32_t *clear_addr_dw = surface_state_map +
device->isl_dev.ss.clear_color_state_offset;
assert((clear_address.offset & 0x3f) == 0);
state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
}
if (state_inout->state.map)
memcpy(state_inout->state.map, surface_state_map, ANV_SURFACE_STATE_SIZE);
}
static uint32_t
anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
{
anv_assert_valid_aspect_set(aspect_mask);
return util_bitcount(aspect_mask);
}
bool
anv_can_hiz_clear_ds_view(struct anv_device *device,
const struct anv_image_view *iview,
VkImageLayout layout,
VkImageAspectFlags clear_aspects,
float depth_clear_value,
VkRect2D render_area,
const VkQueueFlagBits queue_flags)
{
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return false;
/* If we're just clearing stencil, we can always HiZ clear */
if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return true;
/* We must have depth in order to have HiZ */
if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return false;
const enum isl_aux_usage clear_aux_usage =
anv_layout_to_aux_usage(device->info, iview->image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
layout, queue_flags);
if (!blorp_can_hiz_clear_depth(device->info,
&iview->image->planes[0].primary_surface.isl,
clear_aux_usage,
iview->planes[0].isl.base_level,
iview->planes[0].isl.base_array_layer,
render_area.offset.x,
render_area.offset.y,
render_area.offset.x +
render_area.extent.width,
render_area.offset.y +
render_area.extent.height))
return false;
if (depth_clear_value != ANV_HZ_FC_VAL)
return false;
/* If we got here, then we can fast clear */
return true;
}
static bool
isl_color_value_requires_conversion(union isl_color_value color,
const struct isl_surf *surf,
const struct isl_view *view)
{
if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle))
return false;
uint32_t surf_pack[4] = { 0, 0, 0, 0 };
isl_color_value_pack(&color, surf->format, surf_pack);
uint32_t view_pack[4] = { 0, 0, 0, 0 };
union isl_color_value swiz_color =
isl_color_value_swizzle_inv(color, view->swizzle);
isl_color_value_pack(&swiz_color, view->format, view_pack);
return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0;
}
bool
anv_can_fast_clear_color_view(struct anv_device *device,
struct anv_image_view *iview,
VkImageLayout layout,
union isl_color_value clear_color,
uint32_t num_layers,
VkRect2D render_area,
const VkQueueFlagBits queue_flags)
{
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return false;
if (iview->planes[0].isl.base_array_layer >=
anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
iview->planes[0].isl.base_level))
return false;
/* Start by getting the fast clear type. We use the first subpass
* layout here because we don't want to fast-clear if the first subpass
* to use the attachment can't handle fast-clears.
*/
enum anv_fast_clear_type fast_clear_type =
anv_layout_to_fast_clear_type(device->info, iview->image,
VK_IMAGE_ASPECT_COLOR_BIT,
layout, queue_flags);
switch (fast_clear_type) {
case ANV_FAST_CLEAR_NONE:
return false;
case ANV_FAST_CLEAR_DEFAULT_VALUE:
if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format))
return false;
break;
case ANV_FAST_CLEAR_ANY:
break;
}
/* Potentially, we could do partial fast-clears but doing so has crazy
* alignment restrictions. It's easier to just restrict to full size
* fast clears for now.
*/
if (render_area.offset.x != 0 ||
render_area.offset.y != 0 ||
render_area.extent.width != iview->vk.extent.width ||
render_area.extent.height != iview->vk.extent.height)
return false;
/* If the clear color is one that would require non-trivial format
* conversion on resolve, we don't bother with the fast clear. This
* shouldn't be common as most clear colors are 0/1 and the most common
* format re-interpretation is for sRGB.
*/
if (isl_color_value_requires_conversion(clear_color,
&iview->image->planes[0].primary_surface.isl,
&iview->planes[0].isl)) {
anv_perf_warn(VK_LOG_OBJS(&iview->vk.base),
"Cannot fast-clear to colors which would require "
"format conversion on resolve");
return false;
}
/* We only allow fast clears to the first slice of an image (level 0,
* layer 0) and only for the entire slice. This guarantees us that, at
* any given time, there is only one clear color on any given image at
* any given time. At the time of our testing (Jan 17, 2018), there
* were no known applications which would benefit from fast-clearing
* more than just the first slice.
*/
if (iview->planes[0].isl.base_level > 0 ||
iview->planes[0].isl.base_array_layer > 0) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Rendering with multi-lod or multi-layer framebuffer "
"with LOAD_OP_LOAD and baseMipLevel > 0 or "
"baseArrayLayer > 0. Not fast clearing.");
return false;
}
if (num_layers > 1) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Rendering to a multi-layer framebuffer with "
"LOAD_OP_CLEAR. Only fast-clearing the first slice");
}
/* Wa_18020603990 - slow clear surfaces up to 256x256, 32bpp. */
if (intel_needs_workaround(device->info, 18020603990)) {
const struct anv_surface *anv_surf =
&iview->image->planes->primary_surface;
if (isl_format_get_layout(anv_surf->isl.format)->bpb <= 32 &&
anv_surf->isl.logical_level0_px.w <= 256 &&
anv_surf->isl.logical_level0_px.h <= 256)
return false;
}
/* On gfx12.0, CCS fast clears don't seem to cover the correct portion of
* the aux buffer when the pitch is not 512B-aligned.
*/
if (device->info->verx10 == 120 &&
iview->image->planes->primary_surface.isl.samples == 1 &&
iview->image->planes->primary_surface.isl.row_pitch_B % 512) {
anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
"Pitch not 512B-aligned. Slow clearing surface.");
return false;
}
/* Disable sRGB fast-clears for non-0/1 color values on Gfx9. For texturing
* and draw calls, HW expects the clear color to be in two different color
* spaces after sRGB fast-clears - sRGB in the former and linear in the
* latter. By limiting the allowable values to 0/1, both color space
* requirements are satisfied.
*
* Gfx11+ is fine as the fast clear generate 2 colors at the clear color
* address, raw & converted such that all fixed functions can find the
* value they need.
*/
if (device->info->ver == 9 &&
isl_format_is_srgb(iview->planes[0].isl.format) &&
!isl_color_value_is_zero_one(clear_color,
iview->planes[0].isl.format))
return false;
return true;
}
void
anv_image_view_init(struct anv_device *device,
struct anv_image_view *iview,
const VkImageViewCreateInfo *pCreateInfo,
struct anv_state_stream *surface_state_stream)
{
ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
vk_image_view_init(&device->vk, &iview->vk, false, pCreateInfo);
iview->image = image;
iview->n_planes = anv_image_aspect_get_planes(iview->vk.aspects);
iview->use_surface_state_stream = surface_state_stream != NULL;
/* Now go through the underlying image selected planes and map them to
* planes in the image view.
*/
anv_foreach_image_aspect_bit(iaspect_bit, image, iview->vk.aspects) {
const uint32_t vplane =
anv_aspect_to_plane(iview->vk.aspects, 1UL << iaspect_bit);
VkFormat view_format = iview->vk.view_format;
if (anv_is_format_emulated(device->physical, view_format)) {
assert(image->emu_plane_format != VK_FORMAT_UNDEFINED);
view_format =
anv_get_emulation_format(device->physical, view_format);
}
const struct anv_format_plane format = anv_get_format_plane(
device->info, view_format, vplane, image->vk.tiling);
iview->planes[vplane].isl = (struct isl_view) {
.format = format.isl_format,
.base_level = iview->vk.base_mip_level,
.levels = iview->vk.level_count,
.base_array_layer = iview->vk.base_array_layer,
.array_len = iview->vk.layer_count,
.min_lod_clamp = iview->vk.min_lod,
.swizzle = {
.r = remap_swizzle(iview->vk.swizzle.r, format.swizzle),
.g = remap_swizzle(iview->vk.swizzle.g, format.swizzle),
.b = remap_swizzle(iview->vk.swizzle.b, format.swizzle),
.a = remap_swizzle(iview->vk.swizzle.a, format.swizzle),
},
};
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
iview->planes[vplane].isl.base_array_layer = 0;
iview->planes[vplane].isl.array_len = iview->vk.extent.depth;
}
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
} else {
iview->planes[vplane].isl.usage = 0;
}
if (iview->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
iview->planes[vplane].optimal_sampler.state =
anv_device_maybe_alloc_surface_state(device, surface_state_stream);
iview->planes[vplane].general_sampler.state =
anv_device_maybe_alloc_surface_state(device, surface_state_stream);
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_IMAGE_LAYOUT_GENERAL,
VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT);
enum isl_aux_usage optimal_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
optimal_aux_usage, NULL,
ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
&iview->planes[vplane].optimal_sampler);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
general_aux_usage, NULL,
0,
&iview->planes[vplane].general_sampler);
}
/* NOTE: This one needs to go last since it may stomp isl_view.format */
if (iview->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT) {
struct isl_view storage_view = iview->planes[vplane].isl;
if (iview->vk.view_type == VK_IMAGE_VIEW_TYPE_3D) {
storage_view.base_array_layer = iview->vk.storage.z_slice_offset;
storage_view.array_len = iview->vk.storage.z_slice_count;
}
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_LAYOUT_GENERAL,
VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT);
iview->planes[vplane].storage.state =
anv_device_maybe_alloc_surface_state(device, surface_state_stream);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&storage_view,
ISL_SURF_USAGE_STORAGE_BIT,
general_aux_usage, NULL,
0,
&iview->planes[vplane].storage);
}
}
}
void
anv_image_view_finish(struct anv_image_view *iview)
{
struct anv_device *device =
container_of(iview->vk.base.device, struct anv_device, vk);
if (!iview->use_surface_state_stream) {
for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
if (iview->planes[plane].optimal_sampler.state.alloc_size) {
anv_state_pool_free(&device->bindless_surface_state_pool,
iview->planes[plane].optimal_sampler.state);
}
if (iview->planes[plane].general_sampler.state.alloc_size) {
anv_state_pool_free(&device->bindless_surface_state_pool,
iview->planes[plane].general_sampler.state);
}
if (iview->planes[plane].storage.state.alloc_size) {
anv_state_pool_free(&device->bindless_surface_state_pool,
iview->planes[plane].storage.state);
}
}
}
vk_image_view_finish(&iview->vk);
}
VkResult
anv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_image_view *iview;
iview = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*iview), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (iview == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
anv_image_view_init(device, iview, pCreateInfo, NULL);
*pView = anv_image_view_to_handle(iview);
return VK_SUCCESS;
}
void
anv_DestroyImageView(VkDevice _device, VkImageView _iview,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_image_view, iview, _iview);
if (!iview)
return;
anv_image_view_finish(iview);
vk_free2(&iview->vk.base.device->alloc, pAllocator, iview);
}

View File

@@ -157,6 +157,7 @@ libanv_files = files(
'anv_formats.c',
'anv_genX.h',
'anv_image.c',
'anv_image_view.c',
'anv_internal_kernels.c',
'anv_internal_kernels.h',
'anv_instance.c',