glsl_type: Remove vector and matrix constructor generators

All scalar, vector, and matrix constructors are generated in-line
during AST-to-HIR translation.  There is no longer any need to
generate function versions of the constructors.
This commit is contained in:
Ian Romanick
2010-06-25 17:58:16 -07:00
parent 699b247661
commit 12681610f5
3 changed files with 0 additions and 370 deletions

View File

@@ -60,7 +60,6 @@ void
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{ {
_mesa_glsl_initialize_variables(instructions, state); _mesa_glsl_initialize_variables(instructions, state);
_mesa_glsl_initialize_constructors(instructions, state);
_mesa_glsl_initialize_functions(instructions, state); _mesa_glsl_initialize_functions(instructions, state);
state->current_function = NULL; state->current_function = NULL;

View File

@@ -210,371 +210,6 @@ glsl_type::generate_constructor(glsl_symbol_table *symtab) const
} }
/**
* Generate the function intro for a constructor
*
* \param type Data type to be constructed
* \param count Number of parameters to this concrete constructor. Most
* types have at least two constructors. One will take a
* single scalar parameter and the other will take "N"
* scalar parameters.
* \param parameters Storage for the list of parameters. These are
* typically stored in an \c ir_function_signature.
* \param declarations Pointers to the variable declarations for the function
* parameters. These are used later to avoid having to use
* the symbol table.
*/
static ir_function_signature *
generate_constructor_intro(void *ctx,
const glsl_type *type, unsigned parameter_count,
ir_variable **declarations)
{
/* Names of parameters used in vector and matrix constructors
*/
static const char *const names[] = {
"a", "b", "c", "d", "e", "f", "g", "h",
"i", "j", "k", "l", "m", "n", "o", "p",
};
assert(parameter_count <= Elements(names));
const glsl_type *const parameter_type = type->get_base_type();
ir_function_signature *const signature = new(ctx) ir_function_signature(type);
for (unsigned i = 0; i < parameter_count; i++) {
ir_variable *var = new(ctx) ir_variable(parameter_type, names[i]);
var->mode = ir_var_in;
signature->parameters.push_tail(var);
declarations[i] = var;
}
ir_variable *retval = new(ctx) ir_variable(type, "__retval");
signature->body.push_tail(retval);
declarations[16] = retval;
return signature;
}
/**
* Generate the body of a vector constructor that takes a single scalar
*/
static void
generate_vec_body_from_scalar(void *ctx,
exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
/* Generate a single assignment of the parameter to __retval.x and return
* __retval.xxxx for however many vector components there are.
*/
ir_dereference *const lhs_ref =
new(ctx) ir_dereference_variable(declarations[16]);
ir_dereference *const rhs = new(ctx) ir_dereference_variable(declarations[0]);
ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
inst = new(ctx) ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
ir_dereference *const retref = new(ctx) ir_dereference_variable(declarations[16]);
ir_swizzle *retval = new(ctx) ir_swizzle(retref, 0, 0, 0, 0,
declarations[16]->type->vector_elements);
inst = new(ctx) ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a vector constructor that takes multiple scalars
*/
static void
generate_vec_body_from_N_scalars(void *ctx,
exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
const glsl_type *const vec_type = declarations[16]->type;
/* Generate an assignment of each parameter to a single component of
* __retval.x and return __retval.
*/
for (unsigned i = 0; i < vec_type->vector_elements; i++) {
ir_dereference *const lhs_ref =
new(ctx) ir_dereference_variable(declarations[16]);
ir_dereference *const rhs = new(ctx) ir_dereference_variable(declarations[i]);
ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
inst = new(ctx) ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
}
ir_dereference *retval = new(ctx) ir_dereference_variable(declarations[16]);
inst = new(ctx) ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a matrix constructor that takes a single scalar
*/
static void
generate_mat_body_from_scalar(void *ctx,
exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
/* Generate an assignment of the parameter to the X component of a
* temporary vector. Set the remaining fields of the vector to 0. The
* size of the vector is equal to the number of rows of the matrix.
*
* Set each column of the matrix to a successive "rotation" of the
* temporary vector. This fills the matrix with 0s, but writes the single
* scalar along the matrix's diagonal.
*
* For a mat4x3, this is equivalent to:
*
* vec3 tmp;
* mat4x3 __retval;
* tmp.x = a;
* tmp.y = 0.0;
* tmp.z = 0.0;
* __retval[0] = tmp.xyy;
* __retval[1] = tmp.yxy;
* __retval[2] = tmp.yyx;
* __retval[3] = tmp.yyy;
*/
const glsl_type *const column_type = declarations[16]->type->column_type();
const glsl_type *const row_type = declarations[16]->type->row_type();
ir_variable *const column = new(ctx) ir_variable(column_type, "v");
instructions->push_tail(column);
ir_dereference *const lhs_ref = new(ctx) ir_dereference_variable(column);
ir_dereference *const rhs = new(ctx) ir_dereference_variable(declarations[0]);
ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
inst = new(ctx) ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
for (unsigned i = 1; i < column_type->vector_elements; i++) {
ir_dereference *const lhs_ref = new(ctx) ir_dereference_variable(column);
ir_constant *const zero = new(ctx) ir_constant(0.0f);
ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
inst = new(ctx) ir_assignment(lhs, zero, NULL);
instructions->push_tail(inst);
}
for (unsigned i = 0; i < row_type->vector_elements; i++) {
static const unsigned swiz[] = { 1, 1, 1, 0, 1, 1, 1 };
ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(column);
/* This will be .xyyy when i=0, .yxyy when i=1, etc.
*/
ir_swizzle *rhs = new(ctx) ir_swizzle(rhs_ref, swiz[3 - i], swiz[4 - i],
swiz[5 - i], swiz[6 - i],
column_type->vector_elements);
ir_constant *const idx = new(ctx) ir_constant(int(i));
ir_dereference *const lhs =
new(ctx) ir_dereference_array(declarations[16], idx);
inst = new(ctx) ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
}
ir_dereference *const retval = new(ctx) ir_dereference_variable(declarations[16]);
inst = new(ctx) ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a vector constructor that takes multiple scalars
*/
static void
generate_mat_body_from_N_scalars(void *ctx,
exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
const glsl_type *const row_type = declarations[16]->type->row_type();
const glsl_type *const column_type = declarations[16]->type->column_type();
/* Generate an assignment of each parameter to a single component of
* of a particular column of __retval and return __retval.
*/
for (unsigned i = 0; i < column_type->vector_elements; i++) {
for (unsigned j = 0; j < row_type->vector_elements; j++) {
ir_constant *row_index = new(ctx) ir_constant(int(i));
ir_dereference *const row_access =
new(ctx) ir_dereference_array(declarations[16], row_index);
ir_swizzle *component_access = new(ctx) ir_swizzle(row_access,
j, 0, 0, 0, 1);
const unsigned param = (i * row_type->vector_elements) + j;
ir_dereference *const rhs =
new(ctx) ir_dereference_variable(declarations[param]);
inst = new(ctx) ir_assignment(component_access, rhs, NULL);
instructions->push_tail(inst);
}
}
ir_dereference *retval = new(ctx) ir_dereference_variable(declarations[16]);
inst = new(ctx) ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the constructors for a set of GLSL types
*
* Constructor implementations are added to \c instructions, and the symbols
* are added to \c symtab.
*/
static void
generate_constructor(glsl_symbol_table *symtab, const struct glsl_type *types,
unsigned num_types, exec_list *instructions)
{
void *ctx = symtab;
ir_variable *declarations[17];
for (unsigned i = 0; i < num_types; i++) {
/* Only numeric and boolean vectors and matrices get constructors here.
* Structures need to be handled elsewhere. It is expected that scalar
* constructors are never actually called, so they are not generated.
*/
if (!types[i].is_numeric() && !types[i].is_boolean())
continue;
if (types[i].is_scalar())
continue;
/* Generate the function block, add it to the symbol table, and emit it.
*/
ir_function *const f = new(ctx) ir_function(types[i].name);
bool added = symtab->add_function(types[i].name, f);
assert(added);
instructions->push_tail(f);
/* Each type has several basic constructors. The total number of forms
* depends on the derived type.
*
* Vectors: 1 scalar, N scalars
* Matrices: 1 scalar, NxM scalars
*
* Several possible types of constructors are not included in this list.
*
* Scalar constructors are not included. The expectation is that the
* IR generator won't actually generate these as constructor calls. The
* expectation is that it will just generate the necessary type
* conversion.
*
* Matrix contructors from matrices are also not included. The
* expectation is that the IR generator will generate a call to the
* appropriate from-scalars constructor.
*/
ir_function_signature *const sig =
generate_constructor_intro(ctx, &types[i], 1, declarations);
f->add_signature(sig);
if (types[i].is_vector()) {
generate_vec_body_from_scalar(ctx, &sig->body, declarations);
ir_function_signature *const vec_sig =
generate_constructor_intro(ctx,
&types[i], types[i].vector_elements,
declarations);
f->add_signature(vec_sig);
generate_vec_body_from_N_scalars(ctx, &vec_sig->body, declarations);
} else {
assert(types[i].is_matrix());
generate_mat_body_from_scalar(ctx, &sig->body, declarations);
ir_function_signature *const mat_sig =
generate_constructor_intro(ctx,
&types[i],
(types[i].vector_elements
* types[i].matrix_columns),
declarations);
f->add_signature(mat_sig);
generate_mat_body_from_N_scalars(ctx, &mat_sig->body, declarations);
}
}
}
void
generate_110_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_constructor(symtab, builtin_core_types,
Elements(builtin_core_types), instructions);
}
void
generate_120_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_110_constructors(symtab, instructions);
generate_constructor(symtab, builtin_120_types,
Elements(builtin_120_types), instructions);
}
void
generate_130_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_120_constructors(symtab, instructions);
generate_constructor(symtab, builtin_130_types,
Elements(builtin_130_types), instructions);
}
void
_mesa_glsl_initialize_constructors(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
switch (state->language_version) {
case 110:
generate_110_constructors(state->symbols, instructions);
break;
case 120:
generate_120_constructors(state->symbols, instructions);
break;
case 130:
generate_130_constructors(state->symbols, instructions);
break;
default:
/* error */
break;
}
}
glsl_type::glsl_type(void *ctx, const glsl_type *array, unsigned length) : glsl_type::glsl_type(void *ctx, const glsl_type *array, unsigned length) :
base_type(GLSL_TYPE_ARRAY), base_type(GLSL_TYPE_ARRAY),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0), sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),

View File

@@ -440,10 +440,6 @@ extern "C" {
extern void extern void
_mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state); _mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state);
extern void
_mesa_glsl_initialize_constructors(struct exec_list *instructions,
struct _mesa_glsl_parse_state *state);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif