Files
third_party_mesa3d/mesa_codegen.brg

267 lines
7.0 KiB
Plaintext
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
/* DO NOT EDIT mesa_codegen.h. It is a generated file produced
* from mesa_codegen.brg and will be overwritten.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
/* Everything before the first %% is pasted at the start of the
* mesa_codegen.h header file.
*/
#include "ir_to_mesa.h"
#define MBTREE_TYPE struct mbtree
%%
# The list of terminals is the set of things that ir_to_mesa.cpp will
# generate in its trees.
%term assign
%term reference_vec4
%term array_reference_vec4_vec4
%term exp_vec4
%term exp2_vec4
%term log_vec4
%term log2_vec4
2010-05-19 15:50:02 -07:00
%term sin_vec4
%term cos_vec4
%term add_vec4_vec4
%term sub_vec4_vec4
%term mul_vec4_vec4
%term div_vec4_vec4
%term slt_vec4_vec4
%term sgt_vec4_vec4
%term sle_vec4_vec4
%term sge_vec4_vec4
%term seq_vec4_vec4
%term sne_vec4_vec4
%term dp4_vec4_vec4
%term dp3_vec4_vec4
%term dp2_vec4_vec4
%term sqrt_vec4
%term rsq_vec4
%term swizzle_vec4
%term trunc_vec4
# Each tree will produce stmt. Currently, the only production for
# stmt is from an assign rule -- every statement tree from
# ir_to_mesa.cpp assigns a result to a register.
%start stmt
# Now comes all the rules for code generation. Each rule is of the
# general form
#
# produced: term(term, term) cost
# {
# code_run_when_we_choose_this_rule();
# }
#
# where choosing this rule means we turn term(term, term) into
# produced at the cost of "cost". We measure "cost" in approximate
# instruction count. The BURG should then more or less minimize the
# number of instructions.
# A reference of a variable is just a vec4 register location,
# so it can be used as an argument for pretty much anything.
vec4: reference_vec4 0
# A reference of a variable is just a vec4 register location,
# so it can be used as an argument for pretty much anything.
vec4: array_reference_vec4_vec4(vec4, vec4) 1
{
ir_to_mesa_dst_reg address_reg = {PROGRAM_ADDRESS, 0, WRITEMASK_X};
ir_to_mesa_emit_op1_full(tree->v, tree->ir, OPCODE_ARL,
address_reg,
tree->right->src_reg);
ir_to_mesa_emit_op1_full(tree->v, tree->ir, OPCODE_MOV,
tree->dst_reg,
tree->left->src_reg);
}
# Here's the rule everyone will hit: Moving the result of an
# expression into a variable-dereference register location.
#
# Note that this is likely a gratuitous move. We could make variants
# of each of the following rules, e.g:
#
# vec4: add_vec4_vec4(vec4, vec4) 1
# {
# emit(ADD, tree, tree->left, tree->right);
# }
#
# becoming
#
# vec4: assign(vec4_vec4, add_vec4_vec4(vec4, vec4) 1
# {
# emit(ADD, tree->left, tree->right->left, tree->right->right);
# }
#
# But it seems like a lot of extra typing and duped code, when we
# probably want copy propagation and dead code after codegen anyway,
# which would clean these up.
stmt: assign(vec4, vec4) 1
{
2010-05-07 11:31:47 -07:00
ir_to_mesa_emit_op1_full(tree->v, tree->ir, OPCODE_MOV,
tree->left->dst_reg,
tree->right->src_reg);
}
# Perform a swizzle by composing our swizzle with the swizzle
# required to get at the src reg.
vec4: swizzle_vec4(vec4) 1
{
ir_to_mesa_src_reg reg = tree->left->src_reg;
int swiz[4];
int i;
for (i = 0; i < 4; i++) {
swiz[i] = GET_SWZ(tree->src_reg.swizzle, i);
if (swiz[i] >= SWIZZLE_X && swiz[i] <= SWIZZLE_Y) {
swiz[i] = GET_SWZ(tree->left->src_reg.swizzle, swiz[i]);
}
}
reg.swizzle = MAKE_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
2010-05-07 11:31:47 -07:00
ir_to_mesa_emit_op1_full(tree->v, tree->ir, OPCODE_MOV,
tree->dst_reg,
reg);
}
2010-05-19 15:50:02 -07:00
vec4: sin_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_SIN,
tree->dst_reg,
tree->left->src_reg);
}
vec4: cos_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_COS,
tree->dst_reg,
tree->left->src_reg);
}
vec4: add_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_ADD); }
vec4: sub_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_SUB); }
vec4: mul_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_MUL); }
vec4: dp4_vec4_vec4(vec4, vec4) 1
{
ir_to_mesa_emit_op2(tree, OPCODE_DP4);
tree->src_reg.swizzle = SWIZZLE_XXXX;
}
vec4: dp3_vec4_vec4(vec4, vec4) 1
{
ir_to_mesa_emit_op2(tree, OPCODE_DP3);
tree->src_reg.swizzle = SWIZZLE_XXXX;
}
vec4: dp2_vec4_vec4(vec4, vec4) 1
{
ir_to_mesa_emit_op2(tree, OPCODE_DP2);
tree->src_reg.swizzle = SWIZZLE_XXXX;
}
vec4: div_vec4_vec4(vec4, vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_RCP,
tree->dst_reg,
tree->right->src_reg);
2010-05-07 11:31:47 -07:00
ir_to_mesa_emit_op2_full(tree->v, tree->ir, OPCODE_MUL,
tree->dst_reg,
tree->src_reg,
tree->left->src_reg);
}
vec4: slt_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_SLT); }
vec4: sgt_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_SGT); }
vec4: sle_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_SLE); }
vec4: sge_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_SGE); }
vec4: sne_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_SNE); }
vec4: seq_vec4_vec4(vec4, vec4) 1 { ir_to_mesa_emit_op2(tree, OPCODE_SEQ); }
vec4: sqrt_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_RSQ,
tree->dst_reg,
tree->left->src_reg);
2010-05-07 11:31:47 -07:00
ir_to_mesa_emit_op1_full(tree->v, tree->ir, OPCODE_RCP,
tree->dst_reg,
tree->src_reg);
}
vec4: rsq_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_RSQ,
tree->dst_reg,
tree->left->src_reg);
}
vec4: exp_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_EXP,
tree->dst_reg,
tree->left->src_reg);
}
vec4: exp2_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_EX2,
tree->dst_reg,
tree->left->src_reg);
}
vec4: log_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_LOG,
tree->dst_reg,
tree->left->src_reg);
}
vec4: log2_vec4(vec4) 1
{
ir_to_mesa_emit_scalar_op1(tree, OPCODE_LG2,
tree->dst_reg,
tree->left->src_reg);
}
vec4: trunc_vec4(vec4) 1 { ir_to_mesa_emit_op1(tree, OPCODE_TRUNC); }
%%