Files
third_party_mesa3d/src/glsl/ir_algebraic.cpp

483 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ir_algebraic.cpp
*
* Takes advantage of association, commutivity, and other algebraic
* properties to simplify expressions.
*/
#include "ir.h"
#include "ir_visitor.h"
#include "ir_optimization.h"
#include "glsl_types.h"
/**
* Visitor class for replacing expressions with ir_constant values.
*/
class ir_algebraic_visitor : public ir_hierarchical_visitor {
public:
ir_algebraic_visitor()
{
this->progress = false;
}
virtual ~ir_algebraic_visitor()
{
}
virtual ir_visitor_status visit_leave(ir_assignment *);
virtual ir_visitor_status visit_leave(ir_call *);
virtual ir_visitor_status visit_leave(ir_dereference_array *);
virtual ir_visitor_status visit_leave(ir_expression *);
virtual ir_visitor_status visit_leave(ir_if *);
virtual ir_visitor_status visit_leave(ir_return *);
virtual ir_visitor_status visit_leave(ir_swizzle *);
virtual ir_visitor_status visit_leave(ir_texture *);
ir_rvalue *handle_expression(ir_rvalue *in_ir);
bool reassociate_constant(ir_expression *ir1,
int const_index,
ir_constant *constant,
ir_expression *ir2);
void reassociate_operands(ir_expression *ir1,
int op1,
ir_expression *ir2,
int op2);
bool progress;
};
static bool
is_vec_zero(ir_constant *ir)
{
int c;
if (!ir)
return false;
if (!ir->type->is_scalar() &&
!ir->type->is_vector())
return false;
for (c = 0; c < ir->type->vector_elements; c++) {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
if (ir->value.f[c] != 0.0)
return false;
break;
case GLSL_TYPE_INT:
if (ir->value.i[c] != 0)
return false;
break;
case GLSL_TYPE_UINT:
if (ir->value.u[c] != 0)
return false;
break;
case GLSL_TYPE_BOOL:
if (ir->value.b[c] != false)
return false;
break;
default:
assert(!"bad base type");
return false;
}
}
return true;
}
static bool
is_vec_one(ir_constant *ir)
{
int c;
if (!ir)
return false;
if (!ir->type->is_scalar() &&
!ir->type->is_vector())
return false;
for (c = 0; c < ir->type->vector_elements; c++) {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
if (ir->value.f[c] != 1.0)
return false;
break;
case GLSL_TYPE_INT:
if (ir->value.i[c] != 1)
return false;
break;
case GLSL_TYPE_UINT:
if (ir->value.u[c] != 1)
return false;
break;
case GLSL_TYPE_BOOL:
if (ir->value.b[c] != true)
return false;
break;
default:
assert(!"bad base type");
return false;
}
}
return true;
}
static void
update_type(ir_expression *ir)
{
if (ir->operands[0]->type->is_vector())
ir->type = ir->operands[0]->type;
else
ir->type = ir->operands[1]->type;
}
void
ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
int op1,
ir_expression *ir2,
int op2)
{
ir_rvalue *temp = ir2->operands[op2];
ir2->operands[op2] = ir1->operands[op1];
ir1->operands[op1] = temp;
/* Update the type of ir2. The type of ir1 won't have changed --
* base types matched, and at least one of the operands of the 2
* binops is still a vector if any of them were.
*/
update_type(ir2);
this->progress = true;
}
/**
* Reassociates a constant down a tree of adds or multiplies.
*
* Consider (2 * (a * (b * 0.5))). We want to send up with a * b.
*/
bool
ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
ir_constant *constant,
ir_expression *ir2)
{
if (!ir2 || ir1->operation != ir2->operation)
return false;
/* Don't want to even think about matrices. */
if (ir1->operands[0]->type->is_matrix() ||
ir1->operands[0]->type->is_matrix() ||
ir2->operands[1]->type->is_matrix() ||
ir2->operands[1]->type->is_matrix())
return false;
ir_constant *ir2_const[2];
ir2_const[0] = ir2->operands[0]->constant_expression_value();
ir2_const[1] = ir2->operands[1]->constant_expression_value();
if (ir2_const[0] && ir2_const[1])
return false;
if (ir2_const[0]) {
reassociate_operands(ir1, const_index, ir2, 1);
return true;
} else if (ir2_const[1]) {
reassociate_operands(ir1, const_index, ir2, 0);
return true;
}
if (reassociate_constant(ir1, const_index, constant,
ir2->operands[0]->as_expression())) {
update_type(ir2);
return true;
}
if (reassociate_constant(ir1, const_index, constant,
ir2->operands[1]->as_expression())) {
update_type(ir2);
return true;
}
return false;
}
ir_rvalue *
ir_algebraic_visitor::handle_expression(ir_rvalue *in_ir)
{
ir_expression *ir = (ir_expression *)in_ir;
ir_constant *op_const[2] = {NULL, NULL};
ir_expression *op_expr[2] = {NULL, NULL};
unsigned int i;
if (!in_ir)
return NULL;
if (in_ir->ir_type != ir_type_expression)
return in_ir;
for (i = 0; i < ir->get_num_operands(); i++) {
if (ir->operands[i]->type->is_matrix())
return in_ir;
op_const[i] = ir->operands[i]->constant_expression_value();
op_expr[i] = ir->operands[i]->as_expression();
}
switch (ir->operation) {
case ir_unop_logic_not: {
enum ir_expression_operation new_op = ir_unop_logic_not;
if (op_expr[0] == NULL)
break;
switch (op_expr[0]->operation) {
case ir_binop_less: new_op = ir_binop_gequal; break;
case ir_binop_greater: new_op = ir_binop_lequal; break;
case ir_binop_lequal: new_op = ir_binop_greater; break;
case ir_binop_gequal: new_op = ir_binop_less; break;
case ir_binop_equal: new_op = ir_binop_nequal; break;
case ir_binop_nequal: new_op = ir_binop_equal; break;
default:
/* The default case handler is here to silence a warning from GCC.
*/
break;
}
if (new_op != ir_unop_logic_not) {
this->progress = true;
return new(ir) ir_expression(new_op,
ir->type,
op_expr[0]->operands[0],
op_expr[0]->operands[1]);
}
break;
}
case ir_binop_add:
if (is_vec_zero(op_const[0])) {
this->progress = true;
return ir->operands[1];
}
if (is_vec_zero(op_const[1])) {
this->progress = true;
return ir->operands[0];
}
/* Reassociate addition of constants so that we can do constant
* folding.
*/
if (op_const[0] && !op_const[1])
reassociate_constant(ir, 0, op_const[0],
ir->operands[1]->as_expression());
if (op_const[1] && !op_const[0])
reassociate_constant(ir, 1, op_const[1],
ir->operands[0]->as_expression());
break;
case ir_binop_sub:
if (is_vec_zero(op_const[0])) {
this->progress = true;
return new(ir) ir_expression(ir_unop_neg,
ir->type,
ir->operands[1],
NULL);
}
if (is_vec_zero(op_const[1])) {
this->progress = true;
return ir->operands[0];
}
break;
case ir_binop_mul:
if (is_vec_one(op_const[0])) {
this->progress = true;
return ir->operands[1];
}
if (is_vec_one(op_const[1])) {
this->progress = true;
return ir->operands[0];
}
2010-07-28 12:20:38 -07:00
if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
this->progress = true;
2010-07-28 12:20:38 -07:00
return ir_constant::zero(ir, ir->type);
}
/* Reassociate multiplication of constants so that we can do
* constant folding.
*/
if (op_const[0] && !op_const[1])
reassociate_constant(ir, 0, op_const[0],
ir->operands[1]->as_expression());
if (op_const[1] && !op_const[0])
reassociate_constant(ir, 1, op_const[1],
ir->operands[0]->as_expression());
break;
case ir_binop_div:
if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
this->progress = true;
return new(ir) ir_expression(ir_unop_rcp,
ir->type,
ir->operands[1],
NULL);
}
if (is_vec_one(op_const[1])) {
this->progress = true;
return ir->operands[0];
}
break;
case ir_unop_rcp:
if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
this->progress = true;
return op_expr[0]->operands[0];
}
/* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
* backends, except that some backends will have done sqrt ->
* rcp(rsq(x)) and we don't want to undo it for them.
*/
/* As far as we know, all backends are OK with rsq. */
if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
this->progress = true;
return new(ir) ir_expression(ir_unop_rsq,
ir->type,
op_expr[0]->operands[0],
NULL);
}
break;
default:
break;
}
return in_ir;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_expression *ir)
{
unsigned int operand;
for (operand = 0; operand < ir->get_num_operands(); operand++) {
ir->operands[operand] = handle_expression(ir->operands[operand]);
}
return visit_continue;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_texture *ir)
{
ir->coordinate = handle_expression(ir->coordinate);
ir->projector = handle_expression(ir->projector);
ir->shadow_comparitor = handle_expression(ir->shadow_comparitor);
switch (ir->op) {
case ir_tex:
break;
case ir_txb:
ir->lod_info.bias = handle_expression(ir->lod_info.bias);
break;
case ir_txf:
case ir_txl:
ir->lod_info.lod = handle_expression(ir->lod_info.lod);
break;
case ir_txd:
ir->lod_info.grad.dPdx = handle_expression(ir->lod_info.grad.dPdx);
ir->lod_info.grad.dPdy = handle_expression(ir->lod_info.grad.dPdy);
break;
}
return visit_continue;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_swizzle *ir)
{
ir->val = handle_expression(ir->val);
return visit_continue;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_dereference_array *ir)
{
ir->array_index = handle_expression(ir->array_index);
return visit_continue;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_assignment *ir)
{
ir->rhs = handle_expression(ir->rhs);
ir->condition = handle_expression(ir->condition);
return visit_continue;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_call *ir)
{
foreach_iter(exec_list_iterator, iter, *ir) {
ir_rvalue *param = (ir_rvalue *)iter.get();
ir_rvalue *new_param = handle_expression(param);
if (new_param != param) {
param->replace_with(new_param);
}
}
return visit_continue;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_return *ir)
{
ir->value = handle_expression(ir->value);;
return visit_continue;
}
ir_visitor_status
ir_algebraic_visitor::visit_leave(ir_if *ir)
{
ir->condition = handle_expression(ir->condition);
return visit_continue;
}
bool
do_algebraic(exec_list *instructions)
{
ir_algebraic_visitor v;
visit_list_elements(&v, instructions);
return v.progress;
}