Files
third_party_mesa3d/src/vulkan/anv_allocator.c

666 lines
20 KiB
C
Raw Normal View History

2015-05-08 22:32:37 -07:00
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#define _DEFAULT_SOURCE
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <values.h>
#include <assert.h>
#include <linux/futex.h>
#include <linux/memfd.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include "anv_private.h"
2015-05-08 22:32:37 -07:00
#ifdef HAVE_VALGRIND
#define VG_NOACCESS_READ(__ptr) ({ \
VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
__typeof(*(__ptr)) __val = *(__ptr); \
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
__val; \
})
#define VG_NOACCESS_WRITE(__ptr, __val) ({ \
VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
*(__ptr) = (__val); \
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
})
#else
#define VG_NOACCESS_READ(__ptr) (*(__ptr))
#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
#endif
2015-05-08 22:32:37 -07:00
/* Design goals:
*
* - Lock free (except when resizing underlying bos)
*
* - Constant time allocation with typically only one atomic
*
* - Multiple allocation sizes without fragmentation
*
* - Can grow while keeping addresses and offset of contents stable
*
* - All allocations within one bo so we can point one of the
* STATE_BASE_ADDRESS pointers at it.
*
* The overall design is a two-level allocator: top level is a fixed size, big
* block (8k) allocator, which operates out of a bo. Allocation is done by
* either pulling a block from the free list or growing the used range of the
* bo. Growing the range may run out of space in the bo which we then need to
* grow. Growing the bo is tricky in a multi-threaded, lockless environment:
* we need to keep all pointers and contents in the old map valid. GEM bos in
* general can't grow, but we use a trick: we create a memfd and use ftruncate
* to grow it as necessary. We mmap the new size and then create a gem bo for
* it using the new gem userptr ioctl. Without heavy-handed locking around
* our allocation fast-path, there isn't really a way to munmap the old mmap,
* so we just keep it around until garbage collection time. While the block
* allocator is lockless for normal operations, we block other threads trying
* to allocate while we're growing the map. It sholdn't happen often, and
* growing is fast anyway.
*
* At the next level we can use various sub-allocators. The state pool is a
* pool of smaller, fixed size objects, which operates much like the block
* pool. It uses a free list for freeing objects, but when it runs out of
* space it just allocates a new block from the block pool. This allocator is
* intended for longer lived state objects such as SURFACE_STATE and most
* other persistent state objects in the API. We may need to track more info
* with these object and a pointer back to the CPU object (eg VkImage). In
* those cases we just allocate a slightly bigger object and put the extra
* state after the GPU state object.
*
* The state stream allocator works similar to how the i965 DRI driver streams
* all its state. Even with Vulkan, we need to emit transient state (whether
* surface state base or dynamic state base), and for that we can just get a
* block and fill it up. These cases are local to a command buffer and the
* sub-allocator need not be thread safe. The streaming allocator gets a new
* block when it runs out of space and chains them together so they can be
* easily freed.
*/
/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
* We use it to indicate the free list is empty. */
#define EMPTY 1
struct anv_mmap_cleanup {
void *map;
size_t size;
uint32_t gem_handle;
};
#define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
static inline long
sys_futex(void *addr1, int op, int val1,
struct timespec *timeout, void *addr2, int val3)
{
return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
}
static inline int
futex_wake(uint32_t *addr, int count)
{
return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
}
static inline int
futex_wait(uint32_t *addr, int32_t value)
{
return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
}
static inline int
memfd_create(const char *name, unsigned int flags)
{
return syscall(SYS_memfd_create, name, flags);
}
static inline uint32_t
ilog2_round_up(uint32_t value)
{
assert(value != 0);
return 32 - __builtin_clz(value - 1);
}
static inline uint32_t
round_to_power_of_two(uint32_t value)
{
return 1 << ilog2_round_up(value);
}
static bool
anv_free_list_pop(union anv_free_list *list, void **map, uint32_t *offset)
{
union anv_free_list current, next, old;
current = *list;
while (current.offset != EMPTY) {
/* We have to add a memory barrier here so that the list head (and
* offset) gets read before we read the map pointer. This way we
* know that the map pointer is valid for the given offset at the
* point where we read it.
*/
__sync_synchronize();
uint32_t *next_ptr = *map + current.offset;
next.offset = VG_NOACCESS_READ(next_ptr);
2015-05-08 22:32:37 -07:00
next.count = current.count + 1;
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, next.u64);
if (old.u64 == current.u64) {
*offset = current.offset;
return true;
}
current = old;
}
return false;
}
static void
anv_free_list_push(union anv_free_list *list, void *map, uint32_t offset)
{
union anv_free_list current, old, new;
uint32_t *next_ptr = map + offset;
old = *list;
do {
current = old;
VG_NOACCESS_WRITE(next_ptr, current.offset);
2015-05-08 22:32:37 -07:00
new.offset = offset;
new.count = current.count + 1;
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
} while (old.u64 != current.u64);
}
/* All pointers in the ptr_free_list are assumed to be page-aligned. This
* means that the bottom 12 bits should all be zero.
*/
#define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
#define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
#define PFL_PACK(ptr, count) ({ \
assert(((uintptr_t)(ptr) & 0xfff) == 0); \
(void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
})
static bool
anv_ptr_free_list_pop(void **list, void **elem)
{
void *current = *list;
while (PFL_PTR(current) != NULL) {
void **next_ptr = PFL_PTR(current);
void *new_ptr = VG_NOACCESS_READ(next_ptr);
unsigned new_count = PFL_COUNT(current) + 1;
void *new = PFL_PACK(new_ptr, new_count);
void *old = __sync_val_compare_and_swap(list, current, new);
if (old == current) {
*elem = PFL_PTR(current);
return true;
}
current = old;
}
return false;
}
static void
anv_ptr_free_list_push(void **list, void *elem)
{
void *old, *current;
void **next_ptr = elem;
old = *list;
do {
current = old;
VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
unsigned new_count = PFL_COUNT(current) + 1;
void *new = PFL_PACK(elem, new_count);
old = __sync_val_compare_and_swap(list, current, new);
} while (old != current);
}
2015-05-08 22:32:37 -07:00
static int
anv_block_pool_grow(struct anv_block_pool *pool);
void
anv_block_pool_init(struct anv_block_pool *pool,
struct anv_device *device, uint32_t block_size)
{
assert(is_power_of_two(block_size));
pool->device = device;
pool->bo.gem_handle = 0;
pool->bo.offset = 0;
pool->size = 0;
pool->block_size = block_size;
pool->next_block = 0;
pool->free_list = ANV_FREE_LIST_EMPTY;
anv_vector_init(&pool->mmap_cleanups,
round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
/* Immediately grow the pool so we'll have a backing bo. */
anv_block_pool_grow(pool);
}
void
anv_block_pool_finish(struct anv_block_pool *pool)
{
struct anv_mmap_cleanup *cleanup;
anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
if (cleanup->map)
munmap(cleanup->map, cleanup->size);
if (cleanup->gem_handle)
anv_gem_close(pool->device, cleanup->gem_handle);
}
anv_vector_finish(&pool->mmap_cleanups);
close(pool->fd);
}
static int
anv_block_pool_grow(struct anv_block_pool *pool)
{
size_t size;
void *map;
int gem_handle;
struct anv_mmap_cleanup *cleanup;
if (pool->size == 0) {
size = 32 * pool->block_size;
} else {
size = pool->size * 2;
}
cleanup = anv_vector_add(&pool->mmap_cleanups);
if (!cleanup)
return -1;
*cleanup = ANV_MMAP_CLEANUP_INIT;
if (pool->size == 0)
pool->fd = memfd_create("block pool", MFD_CLOEXEC);
if (pool->fd == -1)
return -1;
if (ftruncate(pool->fd, size) == -1)
return -1;
/* First try to see if mremap can grow the map in place. */
map = MAP_FAILED;
if (pool->size > 0)
map = mremap(pool->map, pool->size, size, 0);
if (map == MAP_FAILED) {
/* Just leak the old map until we destroy the pool. We can't munmap it
* without races or imposing locking on the block allocate fast path. On
* the whole the leaked maps adds up to less than the size of the
* current map. MAP_POPULATE seems like the right thing to do, but we
* should try to get some numbers.
*/
map = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_POPULATE, pool->fd, 0);
cleanup->map = map;
cleanup->size = size;
}
if (map == MAP_FAILED)
return -1;
gem_handle = anv_gem_userptr(pool->device, map, size);
if (gem_handle == 0)
return -1;
cleanup->gem_handle = gem_handle;
/* Now that we successfull allocated everything, we can write the new
* values back into pool. */
pool->map = map;
pool->bo.gem_handle = gem_handle;
pool->bo.size = size;
pool->bo.map = map;
pool->bo.index = 0;
/* Write size last and after the memory barrier here. We need the memory
* barrier to make sure map and gem_handle are written before other threads
* see the new size. A thread could allocate a block and then go try using
* the old pool->map and access out of bounds. */
__sync_synchronize();
pool->size = size;
return 0;
}
uint32_t
anv_block_pool_alloc(struct anv_block_pool *pool)
{
uint32_t offset, block, size;
/* Try free list first. */
if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
assert(pool->map);
2015-05-08 22:32:37 -07:00
return offset;
}
2015-05-08 22:32:37 -07:00
restart:
size = pool->size;
block = __sync_fetch_and_add(&pool->next_block, pool->block_size);
if (block < size) {
assert(pool->map);
2015-05-08 22:32:37 -07:00
return block;
} else if (block == size) {
/* We allocated the first block outside the pool, we have to grow it.
* pool->next_block acts a mutex: threads who try to allocate now will
* get block indexes above the current limit and hit futex_wait
* below. */
int err = anv_block_pool_grow(pool);
assert(err == 0);
(void) err;
2015-05-08 22:32:37 -07:00
futex_wake(&pool->size, INT_MAX);
} else {
futex_wait(&pool->size, size);
__sync_fetch_and_add(&pool->next_block, -pool->block_size);
goto restart;
}
return block;
}
void
anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset)
{
anv_free_list_push(&pool->free_list, pool->map, offset);
}
static void
anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
size_t state_size)
{
/* At least a cache line and must divide the block size. */
assert(state_size >= 64 && is_power_of_two(state_size));
pool->state_size = state_size;
pool->free_list = ANV_FREE_LIST_EMPTY;
pool->block.next = 0;
pool->block.end = 0;
}
static uint32_t
anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
struct anv_block_pool *block_pool)
{
uint32_t offset;
struct anv_block_state block, old, new;
/* Try free list first. */
if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset))
return offset;
/* If free list was empty (or somebody raced us and took the items) we
* allocate a new item from the end of the block */
restart:
block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
if (block.next < block.end) {
return block.next;
} else if (block.next == block.end) {
new.next = anv_block_pool_alloc(block_pool);
new.end = new.next + block_pool->block_size;
old.u64 = __sync_fetch_and_add(&pool->block.u64, new.u64 - block.u64);
if (old.next != block.next)
futex_wake(&pool->block.end, INT_MAX);
return new.next;
} else {
futex_wait(&pool->block.end, block.end);
__sync_fetch_and_add(&pool->block.u64, -pool->state_size);
goto restart;
}
}
static void
anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
struct anv_block_pool *block_pool,
uint32_t offset)
{
anv_free_list_push(&pool->free_list, block_pool->map, offset);
}
void
anv_state_pool_init(struct anv_state_pool *pool,
struct anv_block_pool *block_pool)
{
pool->block_pool = block_pool;
for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
anv_fixed_size_state_pool_init(&pool->buckets[i], size);
}
}
struct anv_state
anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
{
unsigned size_log2 = ilog2_round_up(size < align ? align : size);
assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
size_log2 = ANV_MIN_STATE_SIZE_LOG2;
unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
struct anv_state state;
state.alloc_size = 1 << size_log2;
state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
pool->block_pool);
state.map = pool->block_pool->map + state.offset;
VG(VALGRIND_MALLOCLIKE_BLOCK(state.map, size, 0, false));
2015-05-08 22:32:37 -07:00
return state;
}
void
anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
{
assert(is_power_of_two(state.alloc_size));
unsigned size_log2 = ilog2_round_up(state.alloc_size);
assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
VG(VALGRIND_FREELIKE_BLOCK(state.map, 0));
2015-05-08 22:32:37 -07:00
anv_fixed_size_state_pool_free(&pool->buckets[bucket],
pool->block_pool, state.offset);
}
#define NULL_BLOCK 1
struct stream_block {
uint32_t next;
/* The map for the BO at the time the block was givne to us */
void *current_map;
#ifdef HAVE_VALGRIND
void *_vg_ptr;
#endif
2015-05-08 22:32:37 -07:00
};
/* The state stream allocator is a one-shot, single threaded allocator for
* variable sized blocks. We use it for allocating dynamic state.
*/
void
anv_state_stream_init(struct anv_state_stream *stream,
struct anv_block_pool *block_pool)
{
stream->block_pool = block_pool;
stream->next = 0;
stream->end = 0;
stream->current_block = NULL_BLOCK;
}
void
anv_state_stream_finish(struct anv_state_stream *stream)
{
struct stream_block *sb;
uint32_t block, next_block;
block = stream->current_block;
while (block != NULL_BLOCK) {
2015-05-08 22:32:37 -07:00
sb = stream->block_pool->map + block;
next_block = VG_NOACCESS_READ(&sb->next);
VG(VALGRIND_FREELIKE_BLOCK(VG_NOACCESS_READ(&sb->_vg_ptr), 0));
2015-05-08 22:32:37 -07:00
anv_block_pool_free(stream->block_pool, block);
block = next_block;
}
}
struct anv_state
anv_state_stream_alloc(struct anv_state_stream *stream,
uint32_t size, uint32_t alignment)
{
struct stream_block *sb;
struct anv_state state;
uint32_t block;
state.offset = align_u32(stream->next, alignment);
2015-05-08 22:32:37 -07:00
if (state.offset + size > stream->end) {
block = anv_block_pool_alloc(stream->block_pool);
void *current_map = stream->block_pool->map;
sb = current_map + block;
VG_NOACCESS_WRITE(&sb->current_map, current_map);
VG_NOACCESS_WRITE(&sb->next, stream->current_block);
VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0));
2015-05-08 22:32:37 -07:00
stream->current_block = block;
stream->next = block + sizeof(*sb);
stream->end = block + stream->block_pool->block_size;
state.offset = align_u32(stream->next, alignment);
2015-05-08 22:32:37 -07:00
assert(state.offset + size <= stream->end);
}
sb = stream->block_pool->map + stream->current_block;
void *current_map = VG_NOACCESS_READ(&sb->current_map);
2015-05-08 22:32:37 -07:00
state.map = current_map + state.offset;
2015-05-08 22:32:37 -07:00
state.alloc_size = size;
#ifdef HAVE_VALGRIND
void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
if (vg_ptr == NULL) {
vg_ptr = state.map;
VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
VALGRIND_MALLOCLIKE_BLOCK(vg_ptr, size, 0, false);
} else {
ptrdiff_t vg_offset = vg_ptr - current_map;
assert(vg_offset >= stream->current_block &&
vg_offset < stream->end);
VALGRIND_RESIZEINPLACE_BLOCK(vg_ptr,
stream->next - vg_offset,
(state.offset + size) - vg_offset,
0);
}
#endif
stream->next = state.offset + size;
2015-05-08 22:32:37 -07:00
return state;
}
2015-05-25 15:29:27 -07:00
struct bo_pool_bo_link {
struct bo_pool_bo_link *next;
struct anv_bo bo;
};
void
anv_bo_pool_init(struct anv_bo_pool *pool,
struct anv_device *device, uint32_t bo_size)
{
pool->device = device;
pool->bo_size = bo_size;
pool->free_list = NULL;
}
void
anv_bo_pool_finish(struct anv_bo_pool *pool)
{
struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
while (link != NULL) {
struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
/* The anv_gem_m[un]map() functions are also valgrind-safe so they
* act as an alloc/free. In order to avoid a double-free warning, we
* need to mark thiss as malloc'd before we unmap it.
*/
VG(VALGRIND_MALLOCLIKE_BLOCK(link_copy.bo.map, pool->bo_size, 0, false));
2015-05-25 15:29:27 -07:00
anv_gem_munmap(link_copy.bo.map, pool->bo_size);
anv_gem_close(pool->device, link_copy.bo.gem_handle);
link = link_copy.next;
}
}
VkResult
anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
{
VkResult result;
void *next_free_void;
if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
struct bo_pool_bo_link *next_free = next_free_void;
*bo = VG_NOACCESS_READ(&next_free->bo);
assert(bo->map == next_free);
assert(bo->size == pool->bo_size);
VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, pool->bo_size, 0, false));
return VK_SUCCESS;
}
struct anv_bo new_bo;
result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
if (result != VK_SUCCESS)
return result;
assert(new_bo.size == pool->bo_size);
new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size);
if (new_bo.map == NULL) {
anv_gem_close(pool->device, new_bo.gem_handle);
return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
}
/* We don't need to call VALGRIND_MALLOCLIKE_BLOCK here because gem_mmap
* calls it for us. If we really want to be pedantic we could do a
* VALGRIND_FREELIKE_BLOCK right after the mmap, but there's no good
* reason.
*/
2015-05-25 15:29:27 -07:00
*bo = new_bo;
return VK_SUCCESS;
}
void
anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
{
struct bo_pool_bo_link *link = bo->map;
link->bo = *bo;
VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
anv_ptr_free_list_push(&pool->free_list, link);
}