Files
third_party_mesa3d/src/virtio/vulkan/vn_buffer.c

490 lines
15 KiB
C
Raw Normal View History

/*
* Copyright 2019 Google LLC
* SPDX-License-Identifier: MIT
*
* based in part on anv and radv which are:
* Copyright © 2015 Intel Corporation
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*/
#include "vn_buffer.h"
#include "venus-protocol/vn_protocol_driver_buffer.h"
#include "venus-protocol/vn_protocol_driver_buffer_view.h"
#include "vn_android.h"
#include "vn_device.h"
#include "vn_device_memory.h"
#include "vn_physical_device.h"
/* buffer commands */
static inline bool
vn_buffer_create_info_can_be_cached(const VkBufferCreateInfo *create_info,
struct vn_buffer_cache *cache)
{
/* cache only VK_SHARING_MODE_EXCLUSIVE and without pNext for simplicity */
return (create_info->size <= cache->max_buffer_size) &&
(create_info->pNext == NULL) &&
(create_info->sharingMode == VK_SHARING_MODE_EXCLUSIVE);
}
static VkResult
vn_buffer_get_max_buffer_size(struct vn_device *dev,
uint64_t *out_max_buffer_size)
{
const VkAllocationCallbacks *alloc = &dev->base.base.alloc;
struct vn_physical_device *pdev = dev->physical_device;
VkDevice dev_handle = vn_device_to_handle(dev);
VkBuffer buf_handle;
VkBufferCreateInfo create_info = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
};
uint64_t max_buffer_size = 0;
uint8_t begin = 0;
uint8_t end = 64;
if (pdev->features.vulkan_1_3.maintenance4) {
*out_max_buffer_size = pdev->properties.vulkan_1_3.maxBufferSize;
return VK_SUCCESS;
}
/* For drivers that don't support VK_KHR_maintenance4, we try to estimate
* the maxBufferSize using binary search.
* TODO remove all the search code after VK_KHR_maintenance4 becomes
* a requirement.
*/
while (begin < end) {
uint8_t mid = (begin + end) >> 1;
create_info.size = 1ull << mid;
if (vn_CreateBuffer(dev_handle, &create_info, alloc, &buf_handle) ==
VK_SUCCESS) {
vn_DestroyBuffer(dev_handle, buf_handle, alloc);
max_buffer_size = create_info.size;
begin = mid + 1;
} else {
end = mid;
}
}
*out_max_buffer_size = max_buffer_size;
return VK_SUCCESS;
}
VkResult
vn_buffer_cache_init(struct vn_device *dev)
{
uint32_t ahb_mem_type_bits = 0;
uint64_t max_buffer_size = 0;
VkResult result;
if (dev->base.base.enabled_extensions
.ANDROID_external_memory_android_hardware_buffer) {
result =
vn_android_get_ahb_buffer_memory_type_bits(dev, &ahb_mem_type_bits);
if (result != VK_SUCCESS)
return result;
}
if (!VN_PERF(NO_ASYNC_BUFFER_CREATE)) {
result = vn_buffer_get_max_buffer_size(dev, &max_buffer_size);
if (result != VK_SUCCESS)
return result;
}
dev->buffer_cache.ahb_mem_type_bits = ahb_mem_type_bits;
dev->buffer_cache.max_buffer_size = max_buffer_size;
simple_mtx_init(&dev->buffer_cache.mutex, mtx_plain);
util_sparse_array_init(&dev->buffer_cache.entries,
sizeof(struct vn_buffer_cache_entry), 64);
return VK_SUCCESS;
}
void
vn_buffer_cache_fini(struct vn_device *dev)
{
util_sparse_array_finish(&dev->buffer_cache.entries);
simple_mtx_destroy(&dev->buffer_cache.mutex);
}
static struct vn_buffer_cache_entry *
vn_buffer_get_cached_memory_requirements(
struct vn_buffer_cache *cache,
const VkBufferCreateInfo *create_info,
struct vn_buffer_memory_requirements *out)
{
if (VN_PERF(NO_ASYNC_BUFFER_CREATE))
return NULL;
/* 12.7. Resource Memory Association
*
* The memoryTypeBits member is identical for all VkBuffer objects created
* with the same value for the flags and usage members in the
* VkBufferCreateInfo structure and the handleTypes member of the
* VkExternalMemoryBufferCreateInfo structure passed to vkCreateBuffer.
*/
if (vn_buffer_create_info_can_be_cached(create_info, cache)) {
/* Combine flags and usage bits to form a unique index. */
const uint64_t idx =
(uint64_t)create_info->flags << 32 | create_info->usage;
struct vn_buffer_cache_entry *entry =
util_sparse_array_get(&cache->entries, idx);
if (entry->valid) {
*out = entry->requirements;
/* TODO remove comment after mandating VK_KHR_maintenance4
*
* This is based on below implementation defined behavior:
* req.size <= align64(info.size, req.alignment)
*/
out->memory.memoryRequirements.size = align64(
create_info->size, out->memory.memoryRequirements.alignment);
}
return entry;
}
return NULL;
}
static void
vn_buffer_cache_entry_init(struct vn_buffer_cache *cache,
struct vn_buffer_cache_entry *entry,
VkMemoryRequirements2 *req)
{
simple_mtx_lock(&cache->mutex);
/* Entry might have already been initialized by another thread
* before the lock
*/
if (entry->valid)
goto unlock;
entry->requirements.memory = *req;
const VkMemoryDedicatedRequirements *dedicated_req =
vk_find_struct_const(req->pNext, MEMORY_DEDICATED_REQUIREMENTS);
if (dedicated_req)
entry->requirements.dedicated = *dedicated_req;
entry->valid = true;
unlock:
simple_mtx_unlock(&cache->mutex);
}
static void
vn_copy_cached_memory_requirements(
const struct vn_buffer_memory_requirements *cached,
VkMemoryRequirements2 *out_mem_req)
{
union {
VkBaseOutStructure *pnext;
VkMemoryRequirements2 *two;
VkMemoryDedicatedRequirements *dedicated;
} u = { .two = out_mem_req };
while (u.pnext) {
switch (u.pnext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2:
u.two->memoryRequirements = cached->memory.memoryRequirements;
break;
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS:
u.dedicated->prefersDedicatedAllocation =
cached->dedicated.prefersDedicatedAllocation;
u.dedicated->requiresDedicatedAllocation =
cached->dedicated.requiresDedicatedAllocation;
break;
default:
break;
}
u.pnext = u.pnext->pNext;
}
}
static VkResult
vn_buffer_init(struct vn_device *dev,
const VkBufferCreateInfo *create_info,
struct vn_buffer *buf)
{
VkDevice dev_handle = vn_device_to_handle(dev);
VkBuffer buf_handle = vn_buffer_to_handle(buf);
struct vn_buffer_cache *cache = &dev->buffer_cache;
VkResult result;
/* If cacheable and mem requirements found in cache, make async call */
struct vn_buffer_cache_entry *entry =
vn_buffer_get_cached_memory_requirements(cache, create_info,
&buf->requirements);
/* Check size instead of entry->valid to be lock free */
if (buf->requirements.memory.memoryRequirements.size) {
vn_async_vkCreateBuffer(dev->instance, dev_handle, create_info, NULL,
&buf_handle);
return VK_SUCCESS;
}
/* If cache miss or not cacheable, make synchronous call */
result = vn_call_vkCreateBuffer(dev->instance, dev_handle, create_info,
NULL, &buf_handle);
if (result != VK_SUCCESS)
return result;
buf->requirements.memory.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2;
buf->requirements.memory.pNext = &buf->requirements.dedicated;
buf->requirements.dedicated.sType =
VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS;
buf->requirements.dedicated.pNext = NULL;
vn_call_vkGetBufferMemoryRequirements2(
dev->instance, dev_handle,
&(VkBufferMemoryRequirementsInfo2){
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
.buffer = buf_handle,
},
&buf->requirements.memory);
/* If cacheable, store mem requirements from the synchronous call */
if (entry)
vn_buffer_cache_entry_init(cache, entry, &buf->requirements.memory);
return VK_SUCCESS;
}
VkResult
vn_buffer_create(struct vn_device *dev,
const VkBufferCreateInfo *create_info,
const VkAllocationCallbacks *alloc,
struct vn_buffer **out_buf)
{
struct vn_buffer *buf = NULL;
VkResult result;
buf = vk_zalloc(alloc, sizeof(*buf), VN_DEFAULT_ALIGN,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!buf)
return VK_ERROR_OUT_OF_HOST_MEMORY;
vn_object_base_init(&buf->base, VK_OBJECT_TYPE_BUFFER, &dev->base);
result = vn_buffer_init(dev, create_info, buf);
if (result != VK_SUCCESS) {
vn_object_base_fini(&buf->base);
vk_free(alloc, buf);
return result;
}
*out_buf = buf;
return VK_SUCCESS;
}
VkResult
vn_CreateBuffer(VkDevice device,
const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBuffer *pBuffer)
{
VN_TRACE_FUNC();
struct vn_device *dev = vn_device_from_handle(device);
const VkAllocationCallbacks *alloc =
pAllocator ? pAllocator : &dev->base.base.alloc;
struct vn_buffer *buf = NULL;
VkResult result;
const VkExternalMemoryBufferCreateInfo *external_info =
vk_find_struct_const(pCreateInfo->pNext,
EXTERNAL_MEMORY_BUFFER_CREATE_INFO);
const bool ahb_info =
external_info &&
external_info->handleTypes ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
if (ahb_info)
result = vn_android_buffer_from_ahb(dev, pCreateInfo, alloc, &buf);
else
result = vn_buffer_create(dev, pCreateInfo, alloc, &buf);
if (result != VK_SUCCESS)
return vn_error(dev->instance, result);
*pBuffer = vn_buffer_to_handle(buf);
return VK_SUCCESS;
}
void
vn_DestroyBuffer(VkDevice device,
VkBuffer buffer,
const VkAllocationCallbacks *pAllocator)
{
VN_TRACE_FUNC();
struct vn_device *dev = vn_device_from_handle(device);
struct vn_buffer *buf = vn_buffer_from_handle(buffer);
const VkAllocationCallbacks *alloc =
pAllocator ? pAllocator : &dev->base.base.alloc;
if (!buf)
return;
vn_async_vkDestroyBuffer(dev->instance, device, buffer, NULL);
vn_object_base_fini(&buf->base);
vk_free(alloc, buf);
}
VkDeviceAddress
vn_GetBufferDeviceAddress(VkDevice device,
const VkBufferDeviceAddressInfo *pInfo)
{
struct vn_device *dev = vn_device_from_handle(device);
return vn_call_vkGetBufferDeviceAddress(dev->instance, device, pInfo);
}
uint64_t
vn_GetBufferOpaqueCaptureAddress(VkDevice device,
const VkBufferDeviceAddressInfo *pInfo)
{
struct vn_device *dev = vn_device_from_handle(device);
return vn_call_vkGetBufferOpaqueCaptureAddress(dev->instance, device,
pInfo);
}
void
vn_GetBufferMemoryRequirements2(VkDevice device,
const VkBufferMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
const struct vn_buffer *buf = vn_buffer_from_handle(pInfo->buffer);
vn_copy_cached_memory_requirements(&buf->requirements,
pMemoryRequirements);
}
VkResult
vn_BindBufferMemory2(VkDevice device,
uint32_t bindInfoCount,
const VkBindBufferMemoryInfo *pBindInfos)
{
struct vn_device *dev = vn_device_from_handle(device);
const VkAllocationCallbacks *alloc = &dev->base.base.alloc;
VkBindBufferMemoryInfo *local_infos = NULL;
for (uint32_t i = 0; i < bindInfoCount; i++) {
const VkBindBufferMemoryInfo *info = &pBindInfos[i];
struct vn_device_memory *mem =
vn_device_memory_from_handle(info->memory);
if (!mem->base_memory)
continue;
if (!local_infos) {
const size_t size = sizeof(*local_infos) * bindInfoCount;
local_infos = vk_alloc(alloc, size, VN_DEFAULT_ALIGN,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (!local_infos)
return vn_error(dev->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
memcpy(local_infos, pBindInfos, size);
}
local_infos[i].memory = vn_device_memory_to_handle(mem->base_memory);
local_infos[i].memoryOffset += mem->base_offset;
}
if (local_infos)
pBindInfos = local_infos;
vn_async_vkBindBufferMemory2(dev->instance, device, bindInfoCount,
pBindInfos);
vk_free(alloc, local_infos);
return VK_SUCCESS;
}
/* buffer view commands */
VkResult
vn_CreateBufferView(VkDevice device,
const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBufferView *pView)
{
struct vn_device *dev = vn_device_from_handle(device);
const VkAllocationCallbacks *alloc =
pAllocator ? pAllocator : &dev->base.base.alloc;
struct vn_buffer_view *view =
vk_zalloc(alloc, sizeof(*view), VN_DEFAULT_ALIGN,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!view)
return vn_error(dev->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vn_object_base_init(&view->base, VK_OBJECT_TYPE_BUFFER_VIEW, &dev->base);
VkBufferView view_handle = vn_buffer_view_to_handle(view);
vn_async_vkCreateBufferView(dev->instance, device, pCreateInfo, NULL,
&view_handle);
*pView = view_handle;
return VK_SUCCESS;
}
void
vn_DestroyBufferView(VkDevice device,
VkBufferView bufferView,
const VkAllocationCallbacks *pAllocator)
{
struct vn_device *dev = vn_device_from_handle(device);
struct vn_buffer_view *view = vn_buffer_view_from_handle(bufferView);
const VkAllocationCallbacks *alloc =
pAllocator ? pAllocator : &dev->base.base.alloc;
if (!view)
return;
vn_async_vkDestroyBufferView(dev->instance, device, bufferView, NULL);
vn_object_base_fini(&view->base);
vk_free(alloc, view);
}
void
vn_GetDeviceBufferMemoryRequirements(
VkDevice device,
const VkDeviceBufferMemoryRequirements *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
struct vn_device *dev = vn_device_from_handle(device);
struct vn_buffer_cache *cache = &dev->buffer_cache;
struct vn_buffer_memory_requirements reqs = { 0 };
/* If cacheable and mem requirements found in cache, skip host call */
struct vn_buffer_cache_entry *entry =
vn_buffer_get_cached_memory_requirements(cache, pInfo->pCreateInfo,
&reqs);
/* Check size instead of entry->valid to be lock free */
if (reqs.memory.memoryRequirements.size) {
vn_copy_cached_memory_requirements(&reqs, pMemoryRequirements);
return;
}
/* Make the host call if not found in cache or not cacheable */
vn_call_vkGetDeviceBufferMemoryRequirements(dev->instance, device, pInfo,
pMemoryRequirements);
/* If cacheable, store mem requirements from the host call */
if (entry)
vn_buffer_cache_entry_init(cache, entry, pMemoryRequirements);
}