Files
third_party_mesa3d/src/compiler/glsl/float64.glsl

1817 lines
58 KiB
Plaintext
Raw Normal View History

/*
* The implementations contained in this file are heavily based on the
* implementations found in the Berkeley SoftFloat library. As such, they are
* licensed under the same 3-clause BSD license:
*
* License for Berkeley SoftFloat Release 3e
*
* John R. Hauser
* 2018 January 20
*
* The following applies to the whole of SoftFloat Release 3e as well as to
* each source file individually.
*
* Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the
* University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions, and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions, and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#version 430
#extension GL_ARB_gpu_shader_int64 : enable
#extension GL_ARB_shader_bit_encoding : enable
#extension GL_EXT_shader_integer_mix : enable
#extension GL_MESA_shader_integer_functions : enable
#pragma warning(off)
/* Software IEEE floating-point rounding mode.
* GLSL spec section "4.7.1 Range and Precision":
* The rounding mode cannot be set and is undefined.
* But here, we are able to define the rounding mode at the compilation time.
*/
#define FLOAT_ROUND_NEAREST_EVEN 0
#define FLOAT_ROUND_TO_ZERO 1
#define FLOAT_ROUND_DOWN 2
#define FLOAT_ROUND_UP 3
#define FLOAT_ROUNDING_MODE FLOAT_ROUND_NEAREST_EVEN
/* Relax propagation of NaN. Binary operations with a NaN source will still
* produce a NaN result, but it won't follow strict IEEE rules.
*/
#define RELAXED_NAN_PROPAGATION
/* Absolute value of a Float64 :
* Clear the sign bit
*/
uint64_t
__fabs64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
a.y &= 0x7FFFFFFFu;
return packUint2x32(a);
}
/* Returns 1 if the double-precision floating-point value `a' is a NaN;
* otherwise returns 0.
*/
bool
__is_nan(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
return (0xFFE00000u <= (a.y<<1)) &&
((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u));
}
/* Negate value of a Float64 :
* Toggle the sign bit
*/
uint64_t
__fneg64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
a.y ^= (1u << 31);
return packUint2x32(a);
}
uint64_t
__fsign64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
uvec2 retval;
retval.x = 0u;
retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u);
return packUint2x32(retval);
}
/* Returns the fraction bits of the double-precision floating-point value `a'.*/
uint
__extractFloat64FracLo(uint64_t a)
{
return unpackUint2x32(a).x;
}
uint
__extractFloat64FracHi(uint64_t a)
{
return unpackUint2x32(a).y & 0x000FFFFFu;
}
/* Returns the exponent bits of the double-precision floating-point value `a'.*/
int
__extractFloat64Exp(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
return int((a.y>>20) & 0x7FFu);
}
bool
__feq64_nonnan(uint64_t __a, uint64_t __b)
{
uvec2 a = unpackUint2x32(__a);
uvec2 b = unpackUint2x32(__b);
return (a.x == b.x) &&
((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u)));
}
/* Returns true if the double-precision floating-point value `a' is equal to the
* corresponding value `b', and false otherwise. The comparison is performed
* according to the IEEE Standard for Floating-Point Arithmetic.
*/
bool
__feq64(uint64_t a, uint64_t b)
{
if (__is_nan(a) || __is_nan(b))
return false;
return __feq64_nonnan(a, b);
}
/* Returns true if the double-precision floating-point value `a' is not equal
* to the corresponding value `b', and false otherwise. The comparison is
* performed according to the IEEE Standard for Floating-Point Arithmetic.
*/
bool
__fne64(uint64_t a, uint64_t b)
{
if (__is_nan(a) || __is_nan(b))
return true;
return !__feq64_nonnan(a, b);
}
/* Returns the sign bit of the double-precision floating-point value `a'.*/
uint
__extractFloat64Sign(uint64_t a)
{
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
return unpackUint2x32(a).y & 0x80000000u;
}
2020-03-02 18:57:44 -08:00
/* Returns true if the signed 64-bit value formed by concatenating `a0' and
* `a1' is less than the signed 64-bit value formed by concatenating `b0' and
* `b1'. Otherwise, returns false.
*/
bool
2020-03-02 18:57:44 -08:00
ilt64(uint a0, uint a1, uint b0, uint b1)
{
2020-03-02 18:57:44 -08:00
return (int(a0) < int(b0)) || ((a0 == b0) && (a1 < b1));
}
bool
__flt64_nonnan(uint64_t __a, uint64_t __b)
{
uvec2 a = unpackUint2x32(__a);
uvec2 b = unpackUint2x32(__b);
2020-03-02 18:57:44 -08:00
/* IEEE 754 floating point numbers are specifically designed so that, with
* two exceptions, values can be compared by bit-casting to signed integers
* with the same number of bits.
*
* From https://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers:
*
* When comparing as 2's-complement integers: If the sign bits differ,
* the negative number precedes the positive number, so 2's complement
* gives the correct result (except that negative zero and positive zero
* should be considered equal). If both values are positive, the 2's
* complement comparison again gives the correct result. Otherwise (two
* negative numbers), the correct FP ordering is the opposite of the 2's
* complement ordering.
*
* The logic implied by the above quotation is:
*
* !both_are_zero(a, b) && (both_negative(a, b) ? a > b : a < b)
*
* This is equivalent to
*
* fne(a, b) && (both_negative(a, b) ? a >= b : a < b)
*
* fne(a, b) && (both_negative(a, b) ? !(a < b) : a < b)
*
* fne(a, b) && ((both_negative(a, b) && !(a < b)) ||
* (!both_negative(a, b) && (a < b)))
*
* (A!|B)&(A|!B) is (A xor B) which is implemented here using !=.
*
* fne(a, b) && (both_negative(a, b) != (a < b))
*/
bool lt = ilt64(a.y, a.x, b.y, b.x);
bool both_negative = (a.y & b.y & 0x80000000u) != 0;
return !__feq64_nonnan(__a, __b) && (lt != both_negative);
}
/* Returns true if the double-precision floating-point value `a' is less than
* the corresponding value `b', and false otherwise. The comparison is performed
* according to the IEEE Standard for Floating-Point Arithmetic.
*/
bool
__flt64(uint64_t a, uint64_t b)
{
2020-03-02 18:57:44 -08:00
/* This weird layout matters. Doing the "obvious" thing results in extra
* flow control being inserted to implement the short-circuit evaluation
* rules. Flow control is bad!
*/
bool x = !__is_nan(a);
bool y = !__is_nan(b);
bool z = __flt64_nonnan(a, b);
2020-03-02 18:57:44 -08:00
return (x && y && z);
}
/* Returns true if the double-precision floating-point value `a' is greater
* than or equal to * the corresponding value `b', and false otherwise. The
* comparison is performed * according to the IEEE Standard for Floating-Point
* Arithmetic.
*/
bool
__fge64(uint64_t a, uint64_t b)
{
2020-03-02 18:57:44 -08:00
/* This weird layout matters. Doing the "obvious" thing results in extra
* flow control being inserted to implement the short-circuit evaluation
* rules. Flow control is bad!
*/
bool x = !__is_nan(a);
bool y = !__is_nan(b);
bool z = !__flt64_nonnan(a, b);
2020-03-02 18:57:44 -08:00
return (x && y && z);
}
uint64_t
__fsat64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
soft-fp64/fsat: Correctly handle NaN fsat is defined as min(max(a, 0.0), 1.0), and IEEE defines both min and max to return the non-NaN value when one value is NaN. Based on this, fsat should definitely return 0.0 for NaN. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 841666 -> 841647 (<.01%) instructions in affected programs: 122033 -> 122014 (-0.02%) helped: 7 HURT: 0 helped stats (abs) min: 1 max: 4 x̄: 2.71 x̃: 3 helped stats (rel) min: 0.01% max: 0.02% x̄: 0.02% x̃: 0.01% 95% mean confidence interval for instructions value: -3.74 -1.69 95% mean confidence interval for instructions %-change: -0.02% -0.01% Instructions are helped. total cycles in shared programs: 6927246 -> 6926904 (<.01%) cycles in affected programs: 1038987 -> 1038645 (-0.03%) helped: 7 HURT: 0 helped stats (abs) min: 18 max: 72 x̄: 48.86 x̃: 54 helped stats (rel) min: 0.03% max: 0.05% x̄: 0.03% x̃: 0.03% 95% mean confidence interval for cycles value: -67.38 -30.33 95% mean confidence interval for cycles %-change: -0.05% -0.02% Cycles are helped. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Fixes: a42163cbbc1 ("compiler: Add lowering support for 64-bit saturate operations to software") Closes: https://gitlab.freedesktop.org/mesa/mesa/issues/2585 Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 18:38:11 -08:00
/* fsat(NaN) should be zero. */
if (__is_nan(__a) || int(a.y) < 0)
return 0ul;
/* IEEE 754 floating point numbers are specifically designed so that, with
* two exceptions, values can be compared by bit-casting to signed integers
* with the same number of bits.
*
* From https://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers:
*
* When comparing as 2's-complement integers: If the sign bits differ,
* the negative number precedes the positive number, so 2's complement
* gives the correct result (except that negative zero and positive zero
* should be considered equal). If both values are positive, the 2's
* complement comparison again gives the correct result. Otherwise (two
* negative numbers), the correct FP ordering is the opposite of the 2's
* complement ordering.
*
* We know that both values are not negative, and we know that at least one
* value is not zero. Therefore, we can just use the 2's complement
* comparison ordering.
*/
if (ilt64(0x3FF00000, 0x00000000, a.y, a.x))
return 0x3FF0000000000000ul;
return __a;
}
/* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
* value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
* any carry out is lost. The result is broken into two 32-bit pieces which
* are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
__add64(uint a0, uint a1, uint b0, uint b1,
out uint z0Ptr,
out uint z1Ptr)
{
uint z1 = a1 + b1;
z1Ptr = z1;
z0Ptr = a0 + b0 + uint(z1 < a1);
}
/* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
* 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
* 2^64, so any borrow out (carry out) is lost. The result is broken into two
* 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
* `z1Ptr'.
*/
void
__sub64(uint a0, uint a1, uint b0, uint b1,
out uint z0Ptr,
out uint z1Ptr)
{
z1Ptr = a1 - b1;
z0Ptr = a0 - b0 - uint(a1 < b1);
}
/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
* number of bits given in `count'. If any nonzero bits are shifted off, they
* are "jammed" into the least significant bit of the result by setting the
* least significant bit to 1. The value of `count' can be arbitrarily large;
* in particular, if `count' is greater than 64, the result will be either 0
* or 1, depending on whether the concatenation of `a0' and `a1' is zero or
* nonzero. The result is broken into two 32-bit pieces which are stored at
* the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
__shift64RightJamming(uint a0,
uint a1,
int count,
out uint z0Ptr,
out uint z1Ptr)
{
uint z0;
uint z1;
int negCount = (-count) & 31;
z0 = mix(0u, a0, count == 0);
z0 = mix(z0, (a0 >> count), count < 32);
z1 = uint((a0 | a1) != 0u); /* count >= 64 */
uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u);
z1 = mix(z1, z1_lt64, count < 64);
z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32);
uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u);
z1 = mix(z1, z1_lt32, count < 32);
z1 = mix(z1, a1, count == 0);
z1Ptr = z1;
z0Ptr = z0;
}
/* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
* by 32 _plus_ the number of bits given in `count'. The shifted result is
* at most 64 nonzero bits; these are broken into two 32-bit pieces which are
* stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
* off form a third 32-bit result as follows: The _last_ bit shifted off is
* the most-significant bit of the extra result, and the other 31 bits of the
* extra result are all zero if and only if _all_but_the_last_ bits shifted off
* were all zero. This extra result is stored in the location pointed to by
* `z2Ptr'. The value of `count' can be arbitrarily large.
* (This routine makes more sense if `a0', `a1', and `a2' are considered
* to form a fixed-point value with binary point between `a1' and `a2'. This
* fixed-point value is shifted right by the number of bits given in `count',
* and the integer part of the result is returned at the locations pointed to
* by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
* corrupted as described above, and is returned at the location pointed to by
* `z2Ptr'.)
*/
void
__shift64ExtraRightJamming(uint a0, uint a1, uint a2,
int count,
out uint z0Ptr,
out uint z1Ptr,
out uint z2Ptr)
{
uint z0 = 0u;
uint z1;
uint z2;
int negCount = (-count) & 31;
z2 = mix(uint(a0 != 0u), a0, count == 64);
z2 = mix(z2, a0 << negCount, count < 64);
z2 = mix(z2, a1 << negCount, count < 32);
z1 = mix(0u, (a0 >> (count & 31)), count < 64);
z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
a2 = mix(a2 | a1, a2, count < 32);
z0 = mix(z0, a0 >> count, count < 32);
z2 |= uint(a2 != 0u);
z0 = mix(z0, 0u, (count == 32));
z1 = mix(z1, a0, (count == 32));
z2 = mix(z2, a1, (count == 32));
z0 = mix(z0, a0, (count == 0));
z1 = mix(z1, a1, (count == 0));
z2 = mix(z2, a2, (count == 0));
z2Ptr = z2;
z1Ptr = z1;
z0Ptr = z0;
}
/* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
* number of bits given in `count'. Any bits shifted off are lost. The value
* of `count' must be less than 32. The result is broken into two 32-bit
* pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
__shortShift64Left(uint a0, uint a1,
int count,
out uint z0Ptr,
out uint z1Ptr)
{
z1Ptr = a1<<count;
z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0);
}
/* Packs the sign `zSign', the exponent `zExp', and the significand formed by
* the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
* point value, returning the result. After being shifted into the proper
* positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
* together to form the most significant 32 bits of the result. This means
* that any integer portion of `zFrac0' will be added into the exponent. Since
* a properly normalized significand will have an integer portion equal to 1,
* the `zExp' input should be 1 less than the desired result exponent whenever
* `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
*/
uint64_t
__packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1)
{
uvec2 z;
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
z.y = zSign + (uint(zExp) << 20) + zFrac0;
z.x = zFrac1;
return packUint2x32(z);
}
/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
* and extended significand formed by the concatenation of `zFrac0', `zFrac1',
* and `zFrac2', and returns the proper double-precision floating-point value
* corresponding to the abstract input. Ordinarily, the abstract value is
* simply rounded and packed into the double-precision format, with the inexact
* exception raised if the abstract input cannot be represented exactly.
* However, if the abstract value is too large, the overflow and inexact
* exceptions are raised and an infinity or maximal finite value is returned.
* If the abstract value is too small, the input value is rounded to a
* subnormal number, and the underflow and inexact exceptions are raised if the
* abstract input cannot be represented exactly as a subnormal double-precision
* floating-point number.
* The input significand must be normalized or smaller. If the input
* significand is not normalized, `zExp' must be 0; in that case, the result
* returned is a subnormal number, and it must not require rounding. In the
* usual case that the input significand is normalized, `zExp' must be 1 less
* than the "true" floating-point exponent. The handling of underflow and
* overflow follows the IEEE Standard for Floating-Point Arithmetic.
*/
uint64_t
__roundAndPackFloat64(uint zSign,
int zExp,
uint zFrac0,
uint zFrac1,
uint zFrac2)
{
bool roundNearestEven;
bool increment;
roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
increment = int(zFrac2) < 0;
if (!roundNearestEven) {
if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
increment = false;
} else {
if (zSign != 0u) {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
(zFrac2 != 0u);
} else {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
(zFrac2 != 0u);
}
}
}
if (0x7FD <= zExp) {
if ((0x7FD < zExp) ||
((zExp == 0x7FD) &&
(0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) &&
increment)) {
if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) ||
((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) ||
((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) {
return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu);
}
return __packFloat64(zSign, 0x7FF, 0u, 0u);
}
if (zExp < 0) {
__shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2);
zExp = 0;
if (roundNearestEven) {
increment = zFrac2 < 0u;
} else {
if (zSign != 0u) {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
(zFrac2 != 0u);
} else {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
(zFrac2 != 0u);
}
}
}
}
if (increment) {
__add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven));
} else {
zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u);
}
return __packFloat64(zSign, zExp, zFrac0, zFrac1);
}
uint64_t
__roundAndPackUInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
{
bool roundNearestEven;
bool increment;
uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
if (zFrac2 >= 0x80000000u)
increment = false;
if (!roundNearestEven) {
if (zSign != 0u) {
if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)) {
increment = false;
}
} else {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
(zFrac2 != 0u);
}
}
if (increment) {
__add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
if ((zFrac0 | zFrac1) != 0u)
zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
}
return mix(packUint2x32(uvec2(zFrac1, zFrac0)), default_nan,
(zSign != 0u && (zFrac0 | zFrac1) != 0u));
}
int64_t
__roundAndPackInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
{
bool roundNearestEven;
bool increment;
int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
if (zFrac2 >= 0x80000000u)
increment = false;
if (!roundNearestEven) {
if (zSign != 0u) {
increment = ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
(zFrac2 != 0u));
} else {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
(zFrac2 != 0u);
}
}
if (increment) {
__add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
if ((zFrac0 | zFrac1) != 0u)
zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
}
int64_t absZ = mix(int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
-int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
zSign != 0u);
int64_t nan = mix(default_PosNaN, default_NegNaN, zSign != 0u);
return mix(absZ, nan, ((zSign != 0u) != (absZ < 0)) && bool(absZ));
}
/* Returns the number of leading 0 bits before the most-significant 1 bit of
* `a'. If `a' is zero, 32 is returned.
*/
int
__countLeadingZeros32(uint a)
{
soft-fp64: Simplify __countLeadingZeros32 function findMSB returns -1 for an input of zero, so 31 - findMSB(a) is sufficient on its own. There's only one user of findMSB in shader-db, and it does not match this pattern. TODO: Add a pattern in the backend code generator that emits 31 - nir_op_ufind_msb(a) as if it were nir_op_uclz. That should save a couple instructions. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 859509 -> 848109 (-1.33%) instructions in affected programs: 841058 -> 829658 (-1.36%) helped: 97 HURT: 0 helped stats (abs) min: 3 max: 1161 x̄: 117.53 x̃: 72 helped stats (rel) min: 0.98% max: 6.74% x̄: 1.70% x̃: 1.35% 95% mean confidence interval for instructions value: -147.21 -87.84 95% mean confidence interval for instructions %-change: -1.94% -1.46% Instructions are helped. total cycles in shared programs: 7072275 -> 6969145 (-1.46%) cycles in affected programs: 6955767 -> 6852637 (-1.48%) helped: 97 HURT: 0 helped stats (abs) min: 32 max: 10900 x̄: 1063.20 x̃: 560 helped stats (rel) min: 1.18% max: 7.58% x̄: 1.84% x̃: 1.45% 95% mean confidence interval for cycles value: -1339.43 -786.96 95% mean confidence interval for cycles %-change: -2.11% -1.57% Cycles are helped. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:43:11 -08:00
return 31 - findMSB(a);
}
/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
* and significand formed by the concatenation of `zSig0' and `zSig1', and
* returns the proper double-precision floating-point value corresponding
* to the abstract input. This routine is just like `__roundAndPackFloat64'
* except that the input significand has fewer bits and does not have to be
* normalized. In all cases, `zExp' must be 1 less than the "true" floating-
* point exponent.
*/
uint64_t
__normalizeRoundAndPackFloat64(uint zSign,
int zExp,
uint zFrac0,
uint zFrac1)
{
int shiftCount;
uint zFrac2;
if (zFrac0 == 0u) {
zExp -= 32;
zFrac0 = zFrac1;
zFrac1 = 0u;
}
shiftCount = __countLeadingZeros32(zFrac0) - 11;
if (0 <= shiftCount) {
zFrac2 = 0u;
__shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1);
} else {
__shift64ExtraRightJamming(
zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2);
}
zExp -= shiftCount;
return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
}
/* Takes two double-precision floating-point values `a' and `b', one of which
* is a NaN, and returns the appropriate NaN result.
*/
uint64_t
__propagateFloat64NaN(uint64_t __a, uint64_t __b)
{
#if defined RELAXED_NAN_PROPAGATION
uvec2 a = unpackUint2x32(__a);
uvec2 b = unpackUint2x32(__b);
return packUint2x32(uvec2(a.x | b.x, a.y | b.y));
#else
bool aIsNaN = __is_nan(__a);
bool bIsNaN = __is_nan(__b);
uvec2 a = unpackUint2x32(__a);
uvec2 b = unpackUint2x32(__b);
a.y |= 0x00080000u;
b.y |= 0x00080000u;
return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN)));
#endif
}
/* Returns the result of adding the double-precision floating-point values
* `a' and `b'. The operation is performed according to the IEEE Standard for
* Floating-Point Arithmetic.
*/
uint64_t
__fadd64(uint64_t a, uint64_t b)
{
uint aSign = __extractFloat64Sign(a);
uint bSign = __extractFloat64Sign(b);
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
uint bFracLo = __extractFloat64FracLo(b);
uint bFracHi = __extractFloat64FracHi(b);
int aExp = __extractFloat64Exp(a);
int bExp = __extractFloat64Exp(b);
uint zFrac0 = 0u;
uint zFrac1 = 0u;
int expDiff = aExp - bExp;
if (aSign == bSign) {
uint zFrac2 = 0u;
int zExp;
bool orig_exp_diff_is_zero = (expDiff == 0);
if (orig_exp_diff_is_zero) {
if (aExp == 0x7FF) {
bool propagate = ((aFracHi | bFracHi) | (aFracLo| bFracLo)) != 0u;
return mix(a, __propagateFloat64NaN(a, b), propagate);
}
__add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
if (aExp == 0)
return __packFloat64(aSign, 0, zFrac0, zFrac1);
zFrac2 = 0u;
zFrac0 |= 0x00200000u;
zExp = aExp;
__shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
} else if (0 < expDiff) {
if (aExp == 0x7FF) {
bool propagate = (aFracHi | aFracLo) != 0u;
return mix(a, __propagateFloat64NaN(a, b), propagate);
}
expDiff = mix(expDiff, expDiff - 1, bExp == 0);
bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0);
__shift64ExtraRightJamming(
bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2);
zExp = aExp;
} else if (expDiff < 0) {
if (bExp == 0x7FF) {
bool propagate = (bFracHi | bFracLo) != 0u;
return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
}
expDiff = mix(expDiff, expDiff + 1, aExp == 0);
aFracHi = mix(aFracHi | 0x00100000u, aFracHi, aExp == 0);
__shift64ExtraRightJamming(
aFracHi, aFracLo, 0u, - expDiff, aFracHi, aFracLo, zFrac2);
zExp = bExp;
}
if (!orig_exp_diff_is_zero) {
aFracHi |= 0x00100000u;
__add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
--zExp;
if (!(zFrac0 < 0x00200000u)) {
__shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
++zExp;
}
}
return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2);
} else {
int zExp;
__shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo);
__shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo);
if (0 < expDiff) {
if (aExp == 0x7FF) {
bool propagate = (aFracHi | aFracLo) != 0u;
return mix(a, __propagateFloat64NaN(a, b), propagate);
}
expDiff = mix(expDiff, expDiff - 1, bExp == 0);
bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0);
__shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo);
aFracHi |= 0x40000000u;
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
zExp = aExp;
--zExp;
return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
}
if (expDiff < 0) {
if (bExp == 0x7FF) {
bool propagate = (bFracHi | bFracLo) != 0u;
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
return mix(__packFloat64(aSign ^ 0x80000000u, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
}
expDiff = mix(expDiff, expDiff + 1, aExp == 0);
aFracHi = mix(aFracHi | 0x40000000u, aFracHi, aExp == 0);
__shift64RightJamming(aFracHi, aFracLo, - expDiff, aFracHi, aFracLo);
bFracHi |= 0x40000000u;
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
zExp = bExp;
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
aSign ^= 0x80000000u;
--zExp;
return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
}
if (aExp == 0x7FF) {
bool propagate = ((aFracHi | bFracHi) | (aFracLo | bFracLo)) != 0u;
return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate);
}
bExp = mix(bExp, 1, aExp == 0);
aExp = mix(aExp, 1, aExp == 0);
bool zexp_normal = false;
uint sign_of_difference = 0;
if (bFracHi < aFracHi) {
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
zexp_normal = true;
}
else if (aFracHi < bFracHi) {
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
sign_of_difference = 0x80000000;
zexp_normal = true;
}
else if (bFracLo < aFracLo) {
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
zexp_normal = true;
}
else if (aFracLo < bFracLo) {
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
sign_of_difference = 0x80000000;
zexp_normal = true;
}
zExp = mix(bExp, aExp, sign_of_difference == 0u);
aSign ^= sign_of_difference;
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) << 31, 0, 0u, 0u);
uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1);
return mix(retval_0, retval_1, zexp_normal);
}
}
/* Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
* 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
* product. The product is broken into four 32-bit pieces which are stored at
* the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
*/
void
__mul64To128(uint a0, uint a1, uint b0, uint b1,
out uint z0Ptr,
out uint z1Ptr,
out uint z2Ptr,
out uint z3Ptr)
{
uint z0 = 0u;
uint z1 = 0u;
uint z2 = 0u;
uint z3 = 0u;
uint more1 = 0u;
uint more2 = 0u;
umulExtended(a1, b1, z2, z3);
umulExtended(a1, b0, z1, more2);
__add64(z1, more2, 0u, z2, z1, z2);
umulExtended(a0, b0, z0, more1);
__add64(z0, more1, 0u, z1, z0, z1);
umulExtended(a0, b1, more1, more2);
__add64(more1, more2, 0u, z2, more1, z2);
__add64(z0, z1, 0u, more1, z0, z1);
z3Ptr = z3;
z2Ptr = z2;
z1Ptr = z1;
z0Ptr = z0;
}
/* Normalizes the subnormal double-precision floating-point value represented
* by the denormalized significand formed by the concatenation of `aFrac0' and
* `aFrac1'. The normalized exponent is stored at the location pointed to by
* `zExpPtr'. The most significant 21 bits of the normalized significand are
* stored at the location pointed to by `zFrac0Ptr', and the least significant
* 32 bits of the normalized significand are stored at the location pointed to
* by `zFrac1Ptr'.
*/
void
__normalizeFloat64Subnormal(uint aFrac0, uint aFrac1,
out int zExpPtr,
out uint zFrac0Ptr,
out uint zFrac1Ptr)
{
int shiftCount;
uint temp_zfrac0, temp_zfrac1;
shiftCount = __countLeadingZeros32(mix(aFrac0, aFrac1, aFrac0 == 0u)) - 11;
zExpPtr = mix(1 - shiftCount, -shiftCount - 31, aFrac0 == 0u);
temp_zfrac0 = mix(aFrac1<<shiftCount, aFrac1>>(-shiftCount), shiftCount < 0);
temp_zfrac1 = mix(0u, aFrac1<<(shiftCount & 31), shiftCount < 0);
__shortShift64Left(aFrac0, aFrac1, shiftCount, zFrac0Ptr, zFrac1Ptr);
zFrac0Ptr = mix(zFrac0Ptr, temp_zfrac0, aFrac0 == 0);
zFrac1Ptr = mix(zFrac1Ptr, temp_zfrac1, aFrac0 == 0);
}
/* Returns the result of multiplying the double-precision floating-point values
* `a' and `b'. The operation is performed according to the IEEE Standard for
* Floating-Point Arithmetic.
*/
uint64_t
__fmul64(uint64_t a, uint64_t b)
{
uint zFrac0 = 0u;
uint zFrac1 = 0u;
uint zFrac2 = 0u;
uint zFrac3 = 0u;
int zExp;
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
uint bFracLo = __extractFloat64FracLo(b);
uint bFracHi = __extractFloat64FracHi(b);
int aExp = __extractFloat64Exp(a);
uint aSign = __extractFloat64Sign(a);
int bExp = __extractFloat64Exp(b);
uint bSign = __extractFloat64Sign(b);
uint zSign = aSign ^ bSign;
if (aExp == 0x7FF) {
if (((aFracHi | aFracLo) != 0u) ||
((bExp == 0x7FF) && ((bFracHi | bFracLo) != 0u))) {
return __propagateFloat64NaN(a, b);
}
if ((uint(bExp) | bFracHi | bFracLo) == 0u)
return 0xFFFFFFFFFFFFFFFFUL;
return __packFloat64(zSign, 0x7FF, 0u, 0u);
}
if (bExp == 0x7FF) {
/* a cannot be NaN, but is b NaN? */
if ((bFracHi | bFracLo) != 0u)
#if defined RELAXED_NAN_PROPAGATION
return b;
#else
return __propagateFloat64NaN(a, b);
#endif
if ((uint(aExp) | aFracHi | aFracLo) == 0u)
return 0xFFFFFFFFFFFFFFFFUL;
return __packFloat64(zSign, 0x7FF, 0u, 0u);
}
if (aExp == 0) {
if ((aFracHi | aFracLo) == 0u)
return __packFloat64(zSign, 0, 0u, 0u);
__normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
}
if (bExp == 0) {
if ((bFracHi | bFracLo) == 0u)
return __packFloat64(zSign, 0, 0u, 0u);
__normalizeFloat64Subnormal(bFracHi, bFracLo, bExp, bFracHi, bFracLo);
}
zExp = aExp + bExp - 0x400;
aFracHi |= 0x00100000u;
__shortShift64Left(bFracHi, bFracLo, 12, bFracHi, bFracLo);
__mul64To128(
aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1, zFrac2, zFrac3);
__add64(zFrac0, zFrac1, aFracHi, aFracLo, zFrac0, zFrac1);
zFrac2 |= uint(zFrac3 != 0u);
if (0x00200000u <= zFrac0) {
__shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
++zExp;
}
return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
}
uint64_t
__ffma64(uint64_t a, uint64_t b, uint64_t c)
{
return __fadd64(__fmul64(a, b), c);
}
/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
* number of bits given in `count'. Any bits shifted off are lost. The value
* of `count' can be arbitrarily large; in particular, if `count' is greater
* than 64, the result will be 0. The result is broken into two 32-bit pieces
* which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
__shift64Right(uint a0, uint a1,
int count,
out uint z0Ptr,
out uint z1Ptr)
{
uint z0;
uint z1;
int negCount = (-count) & 31;
z0 = 0u;
z0 = mix(z0, (a0 >> count), count < 32);
z0 = mix(z0, a0, count == 0);
z1 = mix(0u, (a0 >> (count & 31)), count < 64);
z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
z1 = mix(z1, a0, count == 0);
z1Ptr = z1;
z0Ptr = z0;
}
/* Returns the result of converting the double-precision floating-point value
* `a' to the unsigned integer format. The conversion is performed according
* to the IEEE Standard for Floating-Point Arithmetic.
*/
uint
__fp64_to_uint(uint64_t a)
{
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
int aExp = __extractFloat64Exp(a);
uint aSign = __extractFloat64Sign(a);
if ((aExp == 0x7FF) && ((aFracHi | aFracLo) != 0u))
return 0xFFFFFFFFu;
aFracHi |= mix(0u, 0x00100000u, aExp != 0);
int shiftDist = 0x427 - aExp;
if (0 < shiftDist)
__shift64RightJamming(aFracHi, aFracLo, shiftDist, aFracHi, aFracLo);
if ((aFracHi & 0xFFFFF000u) != 0u)
return mix(~0u, 0u, aSign != 0u);
uint z = 0u;
uint zero = 0u;
__shift64Right(aFracHi, aFracLo, 12, zero, z);
uint expt = mix(~0u, 0u, aSign != 0u);
return mix(z, expt, (aSign != 0u) && (z != 0u));
}
uint64_t
__uint_to_fp64(uint a)
{
if (a == 0u)
return 0ul;
int shiftDist = __countLeadingZeros32(a) + 21;
uint aHigh = 0u;
uint aLow = 0u;
int negCount = (- shiftDist) & 31;
aHigh = mix(0u, a<< shiftDist - 32, shiftDist < 64);
aLow = 0u;
aHigh = mix(aHigh, 0u, shiftDist == 0);
aLow = mix(aLow, a, shiftDist ==0);
aHigh = mix(aHigh, a >> negCount, shiftDist < 32);
aLow = mix(aLow, a << shiftDist, shiftDist < 32);
return __packFloat64(0u, 0x432 - shiftDist, aHigh, aLow);
}
uint64_t
__uint64_to_fp64(uint64_t a)
{
if (a == 0u)
return 0ul;
uvec2 aFrac = unpackUint2x32(a);
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
if ((aFracHi & 0x80000000u) != 0u) {
__shift64RightJamming(aFracHi, aFracLo, 1, aFracHi, aFracLo);
return __roundAndPackFloat64(0, 0x433, aFracHi, aFracLo, 0u);
} else {
return __normalizeRoundAndPackFloat64(0, 0x432, aFrac.y, aFrac.x);
}
}
uint64_t
__fp64_to_uint64(uint64_t a)
{
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
int aExp = __extractFloat64Exp(a);
uint aSign = __extractFloat64Sign(a);
uint zFrac2 = 0u;
uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
int shiftCount = 0x433 - aExp;
if ( shiftCount <= 0 ) {
if (shiftCount < -11 && aExp == 0x7FF) {
if ((aFracHi | aFracLo) != 0u)
return __propagateFloat64NaN(a, a);
return mix(default_nan, a, aSign == 0u);
}
__shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
} else {
__shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
aFracHi, aFracLo, zFrac2);
}
return __roundAndPackUInt64(aSign, aFracHi, aFracLo, zFrac2);
}
int64_t
__fp64_to_int64(uint64_t a)
{
uint zFrac2 = 0u;
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
int aExp = __extractFloat64Exp(a);
uint aSign = __extractFloat64Sign(a);
int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
int shiftCount = 0x433 - aExp;
if (shiftCount <= 0) {
if (shiftCount < -11 && aExp == 0x7FF) {
if ((aFracHi | aFracLo) != 0u)
return default_NegNaN;
return mix(default_NegNaN, default_PosNaN, aSign == 0u);
}
__shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
} else {
__shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
aFracHi, aFracLo, zFrac2);
}
return __roundAndPackInt64(aSign, aFracHi, aFracLo, zFrac2);
}
uint64_t
__fp32_to_uint64(float f)
{
uint a = floatBitsToUint(f);
uint aFrac = a & 0x007FFFFFu;
int aExp = int((a>>23) & 0xFFu);
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
uint aSign = a & 0x80000000u;
uint zFrac0 = 0u;
uint zFrac1 = 0u;
uint zFrac2 = 0u;
uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
int shiftCount = 0xBE - aExp;
if (shiftCount <0) {
if (aExp == 0xFF)
return default_nan;
}
aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0);
__shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1);
if (shiftCount != 0) {
__shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount,
zFrac0, zFrac1, zFrac2);
}
return __roundAndPackUInt64(aSign, zFrac0, zFrac1, zFrac2);
}
int64_t
__fp32_to_int64(float f)
{
uint a = floatBitsToUint(f);
uint aFrac = a & 0x007FFFFFu;
int aExp = int((a>>23) & 0xFFu);
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
uint aSign = a & 0x80000000u;
uint zFrac0 = 0u;
uint zFrac1 = 0u;
uint zFrac2 = 0u;
int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
int shiftCount = 0xBE - aExp;
if (shiftCount <0) {
if (aExp == 0xFF && aFrac != 0u)
return default_NegNaN;
return mix(default_NegNaN, default_PosNaN, aSign == 0u);
}
aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0);
__shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1);
if (shiftCount != 0) {
__shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount,
zFrac0, zFrac1, zFrac2);
}
return __roundAndPackInt64(aSign, zFrac0, zFrac1, zFrac2);
}
uint64_t
__int64_to_fp64(int64_t a)
{
if (a==0)
return 0ul;
uint64_t absA = mix(uint64_t(a), uint64_t(-a), a < 0);
uint aFracHi = __extractFloat64FracHi(absA);
uvec2 aFrac = unpackUint2x32(absA);
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
uint zSign = uint(unpackInt2x32(a).y) & 0x80000000u;
if ((aFracHi & 0x80000000u) != 0u) {
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
return mix(0ul, __packFloat64(0x80000000u, 0x434, 0u, 0u), a < 0);
}
return __normalizeRoundAndPackFloat64(zSign, 0x432, aFrac.y, aFrac.x);
}
/* Returns the result of converting the double-precision floating-point value
* `a' to the 32-bit two's complement integer format. The conversion is
* performed according to the IEEE Standard for Floating-Point Arithmetic---
* which means in particular that the conversion is rounded according to the
* current rounding mode. If `a' is a NaN, the largest positive integer is
* returned. Otherwise, if the conversion overflows, the largest integer with
* the same sign as `a' is returned.
*/
int
__fp64_to_int(uint64_t a)
{
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
int aExp = __extractFloat64Exp(a);
uint aSign = __extractFloat64Sign(a);
uint absZ = 0u;
uint aFracExtra = 0u;
int shiftCount = aExp - 0x413;
if (0 <= shiftCount) {
if (0x41E < aExp) {
if ((aExp == 0x7FF) && bool(aFracHi | aFracLo))
aSign = 0u;
return mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
}
__shortShift64Left(aFracHi | 0x00100000u, aFracLo, shiftCount, absZ, aFracExtra);
} else {
if (aExp < 0x3FF)
return 0;
aFracHi |= 0x00100000u;
aFracExtra = ( aFracHi << (shiftCount & 31)) | aFracLo;
absZ = aFracHi >> (- shiftCount);
}
int z = mix(int(absZ), -int(absZ), aSign != 0u);
int nan = mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
return mix(z, nan, ((aSign != 0u) != (z < 0)) && bool(z));
}
/* Returns the result of converting the 32-bit two's complement integer `a'
* to the double-precision floating-point format. The conversion is performed
* according to the IEEE Standard for Floating-Point Arithmetic.
*/
uint64_t
__int_to_fp64(int a)
{
uint zFrac0 = 0u;
uint zFrac1 = 0u;
if (a==0)
return __packFloat64(0u, 0, 0u, 0u);
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
uint zSign = uint(a) & 0x80000000u;
uint absA = mix(uint(a), uint(-a), a < 0);
int shiftCount = __countLeadingZeros32(absA) - 11;
if (0 <= shiftCount) {
zFrac0 = absA << shiftCount;
zFrac1 = 0u;
} else {
__shift64Right(absA, 0u, -shiftCount, zFrac0, zFrac1);
}
return __packFloat64(zSign, 0x412 - shiftCount, zFrac0, zFrac1);
}
bool
__fp64_to_bool(uint64_t a)
{
return !__feq64_nonnan(__fabs64(a), 0ul);
}
uint64_t
__bool_to_fp64(bool a)
{
return packUint2x32(uvec2(0x00000000u, uint(-int(a) & 0x3ff00000)));
}
/* Packs the sign `zSign', exponent `zExp', and significand `zFrac' into a
* single-precision floating-point value, returning the result. After being
* shifted into the proper positions, the three fields are simply added
* together to form the result. This means that any integer portion of `zSig'
* will be added into the exponent. Since a properly normalized significand
* will have an integer portion equal to 1, the `zExp' input should be 1 less
* than the desired result exponent whenever `zFrac' is a complete, normalized
* significand.
*/
float
__packFloat32(uint zSign, int zExp, uint zFrac)
{
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
return uintBitsToFloat(zSign + (uint(zExp)<<23) + zFrac);
}
/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
* and significand `zFrac', and returns the proper single-precision floating-
* point value corresponding to the abstract input. Ordinarily, the abstract
* value is simply rounded and packed into the single-precision format, with
* the inexact exception raised if the abstract input cannot be represented
* exactly. However, if the abstract value is too large, the overflow and
* inexact exceptions are raised and an infinity or maximal finite value is
* returned. If the abstract value is too small, the input value is rounded to
* a subnormal number, and the underflow and inexact exceptions are raised if
* the abstract input cannot be represented exactly as a subnormal single-
* precision floating-point number.
* The input significand `zFrac' has its binary point between bits 30
* and 29, which is 7 bits to the left of the usual location. This shifted
* significand must be normalized or smaller. If `zFrac' is not normalized,
* `zExp' must be 0; in that case, the result returned is a subnormal number,
* and it must not require rounding. In the usual case that `zFrac' is
* normalized, `zExp' must be 1 less than the "true" floating-point exponent.
* The handling of underflow and overflow follows the IEEE Standard for
* Floating-Point Arithmetic.
*/
float
__roundAndPackFloat32(uint zSign, int zExp, uint zFrac)
{
bool roundNearestEven;
int roundIncrement;
int roundBits;
roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
roundIncrement = 0x40;
if (!roundNearestEven) {
if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
roundIncrement = 0;
} else {
roundIncrement = 0x7F;
if (zSign != 0u) {
if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)
roundIncrement = 0;
} else {
if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN)
roundIncrement = 0;
}
}
}
roundBits = int(zFrac & 0x7Fu);
if (0xFDu <= uint(zExp)) {
if ((0xFD < zExp) || ((zExp == 0xFD) && (int(zFrac) + roundIncrement) < 0))
return __packFloat32(zSign, 0xFF, 0u) - float(roundIncrement == 0);
int count = -zExp;
bool zexp_lt0 = zExp < 0;
uint zFrac_lt0 = mix(uint(zFrac != 0u), (zFrac>>count) | uint((zFrac<<((-count) & 31)) != 0u), (-zExp) < 32);
zFrac = mix(zFrac, zFrac_lt0, zexp_lt0);
roundBits = mix(roundBits, int(zFrac) & 0x7f, zexp_lt0);
zExp = mix(zExp, 0, zexp_lt0);
}
zFrac = (zFrac + uint(roundIncrement))>>7;
zFrac &= ~uint(((roundBits ^ 0x40) == 0) && roundNearestEven);
return __packFloat32(zSign, mix(zExp, 0, zFrac == 0u), zFrac);
}
/* Returns the result of converting the double-precision floating-point value
* `a' to the single-precision floating-point format. The conversion is
* performed according to the IEEE Standard for Floating-Point Arithmetic.
*/
float
__fp64_to_fp32(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
uint zFrac = 0u;
uint allZero = 0u;
uint aFracLo = __extractFloat64FracLo(__a);
uint aFracHi = __extractFloat64FracHi(__a);
int aExp = __extractFloat64Exp(__a);
uint aSign = __extractFloat64Sign(__a);
if (aExp == 0x7FF) {
__shortShift64Left(a.y, a.x, 12, a.y, a.x);
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
float rval = uintBitsToFloat(aSign | 0x7FC00000u | (a.y>>9));
rval = mix(__packFloat32(aSign, 0xFF, 0u), rval, (aFracHi | aFracLo) != 0u);
return rval;
}
__shift64RightJamming(aFracHi, aFracLo, 22, allZero, zFrac);
zFrac = mix(zFrac, zFrac | 0x40000000u, aExp != 0);
return __roundAndPackFloat32(aSign, aExp - 0x381, zFrac);
}
float
__uint64_to_fp32(uint64_t __a)
{
uvec2 aFrac = unpackUint2x32(__a);
int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33,
__countLeadingZeros32(aFrac.x) - 1,
aFrac.y == 0u);
if (0 <= shiftCount)
__shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
else
__shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
return __roundAndPackFloat32(0u, 0x9C - shiftCount, aFrac.x);
}
float
__int64_to_fp32(int64_t __a)
{
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
uint aSign = uint(unpackInt2x32(__a).y) & 0x80000000u;
uint64_t absA = mix(uint64_t(__a), uint64_t(-__a), __a < 0);
uvec2 aFrac = unpackUint2x32(absA);
int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33,
__countLeadingZeros32(aFrac.x) - 1,
aFrac.y == 0u);
if (0 <= shiftCount)
__shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
else
__shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
return __roundAndPackFloat32(aSign, 0x9C - shiftCount, aFrac.x);
}
/* Returns the result of converting the single-precision floating-point value
* `a' to the double-precision floating-point format.
*/
uint64_t
__fp32_to_fp64(float f)
{
uint a = floatBitsToUint(f);
uint aFrac = a & 0x007FFFFFu;
int aExp = int((a>>23) & 0xFFu);
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
uint aSign = a & 0x80000000u;
uint zFrac0 = 0u;
uint zFrac1 = 0u;
if (aExp == 0xFF) {
if (aFrac != 0u) {
uint nanLo = 0u;
uint nanHi = a<<9;
__shift64Right(nanHi, nanLo, 12, nanHi, nanLo);
soft-fp64: Store sign value as 0 or 0x80000000 ...instead of 0 or 1. Many places the sign bit is extracted, then later put back in the same position. This saves some left-shift operations. Results on the 308 shaders extracted from the fp64 portion of the OpenGL CTS: Tiger Lake and Ice Lake had similar results. (Tiger Lake shown) total instructions in shared programs: 848106 -> 844558 (-0.42%) instructions in affected programs: 833480 -> 829932 (-0.43%) helped: 106 HURT: 1 helped stats (abs) min: 1 max: 995 x̄: 33.48 x̃: 12 helped stats (rel) min: 0.15% max: 2.20% x̄: 0.60% x̃: 0.35% HURT stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1 HURT stats (rel) min: <.01% max: <.01% x̄: <.01% x̃: <.01% 95% mean confidence interval for instructions value: -51.88 -14.43 95% mean confidence interval for instructions %-change: -0.71% -0.47% Instructions are helped. total cycles in shared programs: 6969125 -> 6962024 (-0.10%) cycles in affected programs: 6717689 -> 6710588 (-0.11%) helped: 78 HURT: 7 helped stats (abs) min: 2 max: 2083 x̄: 110.27 x̃: 56 helped stats (rel) min: <.01% max: 0.30% x̄: 0.11% x̃: 0.11% HURT stats (abs) min: 2 max: 1340 x̄: 214.29 x̃: 4 HURT stats (rel) min: 0.01% max: 0.71% x̄: 0.13% x̃: 0.02% 95% mean confidence interval for cycles value: -144.02 -23.06 95% mean confidence interval for cycles %-change: -0.12% -0.07% Cycles are helped. total spills in shared programs: 814 -> 759 (-6.76%) spills in affected programs: 814 -> 759 (-6.76%) helped: 2 HURT: 1 total fills in shared programs: 2488 -> 2412 (-3.05%) fills in affected programs: 2488 -> 2412 (-3.05%) helped: 2 HURT: 1 Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4142>
2020-03-02 16:37:58 -08:00
nanHi |= aSign | 0x7FF80000u;
return packUint2x32(uvec2(nanLo, nanHi));
}
return __packFloat64(aSign, 0x7FF, 0u, 0u);
}
if (aExp == 0) {
if (aFrac == 0u)
return __packFloat64(aSign, 0, 0u, 0u);
/* Normalize subnormal */
int shiftCount = __countLeadingZeros32(aFrac) - 8;
aFrac <<= shiftCount;
aExp = 1 - shiftCount;
--aExp;
}
__shift64Right(aFrac, 0u, 3, zFrac0, zFrac1);
return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1);
}
/* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
* 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
* modulo 2^96, so any carry out is lost. The result is broken into three
* 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
* `z1Ptr', and `z2Ptr'.
*/
void
__add96(uint a0, uint a1, uint a2,
uint b0, uint b1, uint b2,
out uint z0Ptr,
out uint z1Ptr,
out uint z2Ptr)
{
uint z2 = a2 + b2;
uint carry1 = uint(z2 < a2);
uint z1 = a1 + b1;
uint carry0 = uint(z1 < a1);
uint z0 = a0 + b0;
z1 += carry1;
z0 += uint(z1 < carry1);
z0 += carry0;
z2Ptr = z2;
z1Ptr = z1;
z0Ptr = z0;
}
/* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
* the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
* is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
* into three 32-bit pieces which are stored at the locations pointed to by
* `z0Ptr', `z1Ptr', and `z2Ptr'.
*/
void
__sub96(uint a0, uint a1, uint a2,
uint b0, uint b1, uint b2,
out uint z0Ptr,
out uint z1Ptr,
out uint z2Ptr)
{
uint z2 = a2 - b2;
uint borrow1 = uint(a2 < b2);
uint z1 = a1 - b1;
uint borrow0 = uint(a1 < b1);
uint z0 = a0 - b0;
z0 -= uint(z1 < borrow1);
z1 -= borrow1;
z0 -= borrow0;
z2Ptr = z2;
z1Ptr = z1;
z0Ptr = z0;
}
/* Returns an approximation to the 32-bit integer quotient obtained by dividing
* `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
* divisor `b' must be at least 2^31. If q is the exact quotient truncated
* toward zero, the approximation returned lies between q and q + 2 inclusive.
* If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
* unsigned integer is returned.
*/
uint
__estimateDiv64To32(uint a0, uint a1, uint b)
{
uint b0;
uint b1;
uint rem0 = 0u;
uint rem1 = 0u;
uint term0 = 0u;
uint term1 = 0u;
uint z;
if (b <= a0)
return 0xFFFFFFFFu;
b0 = b>>16;
z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16;
umulExtended(b, z, term0, term1);
__sub64(a0, a1, term0, term1, rem0, rem1);
while (int(rem0) < 0) {
z -= 0x10000u;
b1 = b<<16;
__add64(rem0, rem1, b0, b1, rem0, rem1);
}
rem0 = (rem0<<16) | (rem1>>16);
z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0;
return z;
}
uint
__sqrtOddAdjustments(int index)
{
uint res = 0u;
if (index == 0)
res = 0x0004u;
if (index == 1)
res = 0x0022u;
if (index == 2)
res = 0x005Du;
if (index == 3)
res = 0x00B1u;
if (index == 4)
res = 0x011Du;
if (index == 5)
res = 0x019Fu;
if (index == 6)
res = 0x0236u;
if (index == 7)
res = 0x02E0u;
if (index == 8)
res = 0x039Cu;
if (index == 9)
res = 0x0468u;
if (index == 10)
res = 0x0545u;
if (index == 11)
res = 0x631u;
if (index == 12)
res = 0x072Bu;
if (index == 13)
res = 0x0832u;
if (index == 14)
res = 0x0946u;
if (index == 15)
res = 0x0A67u;
return res;
}
uint
__sqrtEvenAdjustments(int index)
{
uint res = 0u;
if (index == 0)
res = 0x0A2Du;
if (index == 1)
res = 0x08AFu;
if (index == 2)
res = 0x075Au;
if (index == 3)
res = 0x0629u;
if (index == 4)
res = 0x051Au;
if (index == 5)
res = 0x0429u;
if (index == 6)
res = 0x0356u;
if (index == 7)
res = 0x029Eu;
if (index == 8)
res = 0x0200u;
if (index == 9)
res = 0x0179u;
if (index == 10)
res = 0x0109u;
if (index == 11)
res = 0x00AFu;
if (index == 12)
res = 0x0068u;
if (index == 13)
res = 0x0034u;
if (index == 14)
res = 0x0012u;
if (index == 15)
res = 0x0002u;
return res;
}
/* Returns an approximation to the square root of the 32-bit significand given
* by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
* `aExp' (the least significant bit) is 1, the integer returned approximates
* 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
* is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
* case, the approximation returned lies strictly within +/-2 of the exact
* value.
*/
uint
__estimateSqrt32(int aExp, uint a)
{
uint z;
int index = int(a>>27 & 15u);
if ((aExp & 1) != 0) {
z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index);
z = ((a / z)<<14) + (z<<15);
a >>= 1;
} else {
z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index);
z = a / z + z;
z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15);
if (z <= a)
return uint(int(a)>>1);
}
return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1);
}
/* Returns the square root of the double-precision floating-point value `a'.
* The operation is performed according to the IEEE Standard for Floating-Point
* Arithmetic.
*/
uint64_t
__fsqrt64(uint64_t a)
{
uint zFrac0 = 0u;
uint zFrac1 = 0u;
uint zFrac2 = 0u;
uint doubleZFrac0 = 0u;
uint rem0 = 0u;
uint rem1 = 0u;
uint rem2 = 0u;
uint rem3 = 0u;
uint term0 = 0u;
uint term1 = 0u;
uint term2 = 0u;
uint term3 = 0u;
uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
int aExp = __extractFloat64Exp(a);
uint aSign = __extractFloat64Sign(a);
if (aExp == 0x7FF) {
if ((aFracHi | aFracLo) != 0u)
return __propagateFloat64NaN(a, a);
if (aSign == 0u)
return a;
return default_nan;
}
if (aSign != 0u) {
if ((uint(aExp) | aFracHi | aFracLo) == 0u)
return a;
return default_nan;
}
if (aExp == 0) {
if ((aFracHi | aFracLo) == 0u)
return __packFloat64(0u, 0, 0u, 0u);
__normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
}
int zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
aFracHi |= 0x00100000u;
__shortShift64Left(aFracHi, aFracLo, 11, term0, term1);
zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u;
if (zFrac0 == 0u)
zFrac0 = 0x7FFFFFFFu;
doubleZFrac0 = zFrac0 + zFrac0;
__shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo);
umulExtended(zFrac0, zFrac0, term0, term1);
__sub64(aFracHi, aFracLo, term0, term1, rem0, rem1);
while (int(rem0) < 0) {
--zFrac0;
doubleZFrac0 -= 2u;
__add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1);
}
zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0);
if ((zFrac1 & 0x1FFu) <= 5u) {
if (zFrac1 == 0u)
zFrac1 = 1u;
umulExtended(doubleZFrac0, zFrac1, term1, term2);
__sub64(rem1, 0u, term1, term2, rem1, rem2);
umulExtended(zFrac1, zFrac1, term2, term3);
__sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3);
while (int(rem1) < 0) {
--zFrac1;
__shortShift64Left(0u, zFrac1, 1, term2, term3);
term3 |= 1u;
term2 |= doubleZFrac0;
__add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3);
}
zFrac1 |= uint((rem1 | rem2 | rem3) != 0u);
}
__shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2);
return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2);
}
uint64_t
__ftrunc64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
int aExp = __extractFloat64Exp(__a);
uint zLo;
uint zHi;
int unbiasedExp = aExp - 1023;
int fracBits = 52 - unbiasedExp;
uint maskLo = mix(~0u << fracBits, 0u, fracBits >= 32);
uint maskHi = mix(~0u << (fracBits - 32), ~0u, fracBits < 33);
zLo = maskLo & a.x;
zHi = maskHi & a.y;
zLo = mix(zLo, 0u, unbiasedExp < 0);
zHi = mix(zHi, 0u, unbiasedExp < 0);
zLo = mix(zLo, a.x, unbiasedExp > 52);
zHi = mix(zHi, a.y, unbiasedExp > 52);
return packUint2x32(uvec2(zLo, zHi));
}
uint64_t
__ffloor64(uint64_t a)
{
/* The big assumtion is that when 'a' is NaN, __ftrunc(a) returns a. Based
* on that assumption, NaN values that don't have the sign bit will safely
* return NaN (identity). This is guarded by RELAXED_NAN_PROPAGATION
* because otherwise the NaN should have the "signal" bit set. The
* __fadd64 will ensure that occurs.
*/
bool is_positive =
#if defined RELAXED_NAN_PROPAGATION
int(unpackUint2x32(a).y) >= 0
#else
__fge64(a, 0ul)
#endif
;
uint64_t tr = __ftrunc64(a);
if (is_positive || __feq64(tr, a)) {
return tr;
} else {
return __fadd64(tr, 0xbff0000000000000ul /* -1.0 */);
}
}
uint64_t
__fround64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
int unbiasedExp = __extractFloat64Exp(__a) - 1023;
uint aHi = a.y;
uint aLo = a.x;
if (unbiasedExp < 20) {
if (unbiasedExp < 0) {
if ((aHi & 0x80000000u) != 0u && aLo == 0u) {
return 0;
}
aHi &= 0x80000000u;
if ((a.y & 0x000FFFFFu) == 0u && a.x == 0u) {
aLo = 0u;
return packUint2x32(uvec2(aLo, aHi));
}
aHi = mix(aHi, (aHi | 0x3FF00000u), unbiasedExp == -1);
aLo = 0u;
} else {
uint maskExp = 0x000FFFFFu >> unbiasedExp;
uint lastBit = maskExp + 1;
aHi += 0x00080000u >> unbiasedExp;
if ((aHi & maskExp) == 0u)
aHi &= ~lastBit;
aHi &= ~maskExp;
aLo = 0u;
}
} else if (unbiasedExp > 51 || unbiasedExp == 1024) {
return __a;
} else {
uint maskExp = 0xFFFFFFFFu >> (unbiasedExp - 20);
if ((aLo & maskExp) == 0u)
return __a;
uint tmp = aLo + (1u << (51 - unbiasedExp));
if(tmp < aLo)
aHi += 1u;
aLo = tmp;
aLo &= ~maskExp;
}
return packUint2x32(uvec2(aLo, aHi));
}
uint64_t
__fmin64(uint64_t a, uint64_t b)
{
/* This weird layout matters. Doing the "obvious" thing results in extra
* flow control being inserted to implement the short-circuit evaluation
* rules. Flow control is bad!
*/
bool b_nan = __is_nan(b);
bool a_lt_b = __flt64_nonnan(a, b);
bool a_nan = __is_nan(a);
return (b_nan || a_lt_b) && !a_nan ? a : b;
}
uint64_t
__fmax64(uint64_t a, uint64_t b)
{
/* This weird layout matters. Doing the "obvious" thing results in extra
* flow control being inserted to implement the short-circuit evaluation
* rules. Flow control is bad!
*/
bool b_nan = __is_nan(b);
bool a_lt_b = __flt64_nonnan(a, b);
bool a_nan = __is_nan(a);
return (b_nan || a_lt_b) && !a_nan ? b : a;
}
uint64_t
__ffract64(uint64_t a)
{
return __fadd64(a, __fneg64(__ffloor64(a)));
}