Files
third_party_mesa3d/src/intel/compiler/brw_ir_fs.h

573 lines
17 KiB
C
Raw Normal View History

/* -*- c++ -*- */
/*
* Copyright © 2010-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BRW_IR_FS_H
#define BRW_IR_FS_H
#include "brw_shader.h"
class fs_inst;
class fs_reg : public backend_reg {
public:
DECLARE_RALLOC_CXX_OPERATORS(fs_reg)
void init();
fs_reg();
fs_reg(struct ::brw_reg reg);
fs_reg(enum brw_reg_file file, int nr);
fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type);
bool equals(const fs_reg &r) const;
bool negative_equals(const fs_reg &r) const;
bool is_contiguous() const;
/**
* Return the size in bytes of a single logical component of the
* register assuming the given execution width.
*/
unsigned component_size(unsigned width) const;
/** Register region horizontal stride */
uint8_t stride;
};
static inline fs_reg
negate(fs_reg reg)
{
assert(reg.file != IMM);
reg.negate = !reg.negate;
return reg;
}
static inline fs_reg
retype(fs_reg reg, enum brw_reg_type type)
{
reg.type = type;
return reg;
}
static inline fs_reg
byte_offset(fs_reg reg, unsigned delta)
{
switch (reg.file) {
case BAD_FILE:
break;
case VGRF:
case ATTR:
case UNIFORM:
reg.offset += delta;
break;
case MRF: {
const unsigned suboffset = reg.offset + delta;
reg.nr += suboffset / REG_SIZE;
reg.offset = suboffset % REG_SIZE;
break;
}
case ARF:
case FIXED_GRF: {
const unsigned suboffset = reg.subnr + delta;
reg.nr += suboffset / REG_SIZE;
reg.subnr = suboffset % REG_SIZE;
break;
}
case IMM:
default:
assert(delta == 0);
}
return reg;
}
static inline fs_reg
horiz_offset(const fs_reg &reg, unsigned delta)
{
switch (reg.file) {
case BAD_FILE:
case UNIFORM:
case IMM:
/* These only have a single component that is implicitly splatted. A
* horizontal offset should be a harmless no-op.
* XXX - Handle vector immediates correctly.
*/
return reg;
case VGRF:
case MRF:
case ATTR:
return byte_offset(reg, delta * reg.stride * type_sz(reg.type));
case ARF:
case FIXED_GRF:
if (reg.is_null()) {
return reg;
} else {
const unsigned stride = reg.hstride ? 1 << (reg.hstride - 1) : 0;
return byte_offset(reg, delta * stride * type_sz(reg.type));
}
}
unreachable("Invalid register file");
}
static inline fs_reg
offset(fs_reg reg, unsigned width, unsigned delta)
{
switch (reg.file) {
case BAD_FILE:
break;
case ARF:
case FIXED_GRF:
case MRF:
case VGRF:
case ATTR:
case UNIFORM:
return byte_offset(reg, delta * reg.component_size(width));
case IMM:
assert(delta == 0);
}
return reg;
}
/**
* Get the scalar channel of \p reg given by \p idx and replicate it to all
* channels of the result.
*/
static inline fs_reg
component(fs_reg reg, unsigned idx)
{
reg = horiz_offset(reg, idx);
reg.stride = 0;
return reg;
}
/**
* Return an integer identifying the discrete address space a register is
* contained in. A register is by definition fully contained in the single
* reg_space it belongs to, so two registers with different reg_space ids are
* guaranteed not to overlap. Most register files are a single reg_space of
* its own, only the VGRF file is composed of multiple discrete address
* spaces, one for each VGRF allocation.
*/
static inline uint32_t
reg_space(const fs_reg &r)
{
return r.file << 16 | (r.file == VGRF ? r.nr : 0);
}
/**
* Return the base offset in bytes of a register relative to the start of its
* reg_space().
*/
static inline unsigned
reg_offset(const fs_reg &r)
{
i965/fs: Replace fs_reg::reg_offset with fs_reg::offset expressed in bytes. The fs_reg::offset field in byte units introduced in this patch is a more straightforward alternative to the current register offset representation split between fs_reg::reg_offset and ::subreg_offset. The split representation makes it too easy to forget about one of the offsets while dealing with the other, which has led to multiple back-end bugs in the past. To make the matter worse the unit reg_offset was expressed in was rather inconsistent, for uniforms it would be expressed in either 4B or 16B units depending on the back-end, and for most other things it would be expressed in 32B units. This encodes reg_offset as a new offset field expressed consistently in byte units. Each rvalue reference of reg_offset in existing code like 'x = r.reg_offset' is rewritten to 'x = r.offset / reg_unit', and each lvalue reference like 'r.reg_offset = x' is rewritten to 'r.offset = r.offset % reg_unit + x * reg_unit'. Because the change affects a lot of places and is rather non-trivial to verify due to the inconsistent value of reg_unit, I've tried to avoid making any additional changes other than applying the rewrite rule above in order to keep the patch as simple as possible, sometimes at the cost of introducing obvious stupidity (e.g. algebraic expressions that could be simplified given some knowledge of the context) -- I'll clean those up later on in a second pass. Reviewed-by: Iago Toral Quiroga <itoral@igalia.com>
2016-09-01 12:42:20 -07:00
return (r.file == VGRF || r.file == IMM ? 0 : r.nr) *
(r.file == UNIFORM ? 4 : REG_SIZE) + r.offset +
(r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0);
}
/**
* Return the amount of padding in bytes left unused between individual
* components of register \p r due to a (horizontal) stride value greater than
* one, or zero if components are tightly packed in the register file.
*/
static inline unsigned
reg_padding(const fs_reg &r)
{
const unsigned stride = ((r.file != ARF && r.file != FIXED_GRF) ? r.stride :
r.hstride == 0 ? 0 :
1 << (r.hstride - 1));
return (MAX2(1, stride) - 1) * type_sz(r.type);
}
/**
* Return whether the register region starting at \p r and spanning \p dr
* bytes could potentially overlap the register region starting at \p s and
* spanning \p ds bytes.
*/
static inline bool
regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
{
if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) {
fs_reg t = r;
t.nr &= ~BRW_MRF_COMPR4;
/* COMPR4 regions are translated by the hardware during decompression
* into two separate half-regions 4 MRFs apart from each other.
*/
return regions_overlap(t, dr / 2, s, ds) ||
regions_overlap(byte_offset(t, 4 * REG_SIZE), dr / 2, s, ds);
} else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) {
return regions_overlap(s, ds, r, dr);
} else {
return reg_space(r) == reg_space(s) &&
!(reg_offset(r) + dr <= reg_offset(s) ||
reg_offset(s) + ds <= reg_offset(r));
}
}
/**
* Check that the register region given by r [r.offset, r.offset + dr[
* is fully contained inside the register region given by s
* [s.offset, s.offset + ds[.
*/
static inline bool
region_contained_in(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
{
return reg_space(r) == reg_space(s) &&
reg_offset(r) >= reg_offset(s) &&
reg_offset(r) + dr <= reg_offset(s) + ds;
}
/**
* Return whether the given register region is n-periodic, i.e. whether the
* original region remains invariant after shifting it by \p n scalar
* channels.
*/
static inline bool
is_periodic(const fs_reg &reg, unsigned n)
{
if (reg.file == BAD_FILE || reg.is_null()) {
return true;
} else if (reg.file == IMM) {
const unsigned period = (reg.type == BRW_REGISTER_TYPE_UV ||
reg.type == BRW_REGISTER_TYPE_V ? 8 :
reg.type == BRW_REGISTER_TYPE_VF ? 4 :
1);
return n % period == 0;
} else if (reg.file == ARF || reg.file == FIXED_GRF) {
const unsigned period = (reg.hstride == 0 && reg.vstride == 0 ? 1 :
reg.vstride == 0 ? 1 << reg.width :
~0);
return n % period == 0;
} else {
return reg.stride == 0;
}
}
static inline bool
is_uniform(const fs_reg &reg)
{
return is_periodic(reg, 1);
}
/**
* Get the specified 8-component quarter of a register.
* XXX - Maybe come up with a less misleading name for this (e.g. quarter())?
*/
static inline fs_reg
half(const fs_reg &reg, unsigned idx)
{
assert(idx < 2);
return horiz_offset(reg, 8 * idx);
}
/**
* Reinterpret each channel of register \p reg as a vector of values of the
* given smaller type and take the i-th subcomponent from each.
*/
static inline fs_reg
subscript(fs_reg reg, brw_reg_type type, unsigned i)
{
assert((i + 1) * type_sz(type) <= type_sz(reg.type));
if (reg.file == ARF || reg.file == FIXED_GRF) {
/* The stride is encoded inconsistently for fixed GRF and ARF registers
* as the log2 of the actual vertical and horizontal strides.
*/
const int delta = _mesa_logbase2(type_sz(reg.type)) -
_mesa_logbase2(type_sz(type));
reg.hstride += (reg.hstride ? delta : 0);
reg.vstride += (reg.vstride ? delta : 0);
} else if (reg.file == IMM) {
assert(reg.type == type);
} else {
reg.stride *= type_sz(reg.type) / type_sz(type);
}
return byte_offset(retype(reg, type), i * type_sz(type));
}
static inline fs_reg
horiz_stride(fs_reg reg, unsigned s)
{
reg.stride *= s;
return reg;
}
static const fs_reg reg_undef;
class fs_inst : public backend_instruction {
fs_inst &operator=(const fs_inst &);
void init(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
const fs_reg *src, unsigned sources);
public:
DECLARE_RALLOC_CXX_OPERATORS(fs_inst)
fs_inst();
fs_inst(enum opcode opcode, uint8_t exec_size);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1, const fs_reg &src2);
fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg src[], unsigned sources);
fs_inst(const fs_inst &that);
~fs_inst();
void resize_sources(uint8_t num_sources);
bool is_send_from_grf() const;
bool is_payload(unsigned arg) const;
bool is_partial_write() const;
bool is_copy_payload(const brw::simple_allocator &grf_alloc) const;
unsigned components_read(unsigned i) const;
unsigned size_read(int arg) const;
bool can_do_source_mods(const struct gen_device_info *devinfo) const;
bool can_do_cmod();
bool can_change_types() const;
i965: Add src/dst interference for certain instructions with hazards. When working on tessellation shaders, I created some vec4 virtual opcodes for creating message headers through a sequence like: mov(8) g7<1>UD 0x00000000UD { align1 WE_all 1Q compacted }; mov(1) g7.5<1>UD 0x00000100UD { align1 WE_all }; mov(1) g7<1>UD g0<0,1,0>UD { align1 WE_all compacted }; mov(1) g7.3<1>UD g8<0,1,0>UD { align1 WE_all }; This is done in the generator since the vec4 backend can't handle align1 regioning. From the visitor's point of view, this is a single opcode: hs_set_output_urb_offsets vgrf7.0:UD, 1U, vgrf8.xxxx:UD Normally, there's no hazard between sources and destinations - an instruction (naturally) reads its sources, then writes the result to the destination. However, when the virtual instruction generates multiple hardware instructions, we can get into trouble. In the above example, if the register allocator assigned vgrf7 and vgrf8 to the same hardware register, then we'd clobber the source with 0 in the first instruction, and read back the wrong value in the last one. It occured to me that this is exactly the same problem we have with SIMD16 instructions that use W/UW or B/UB types with 0 stride. The hardware implicitly decodes them as two SIMD8 instructions, and with the overlapping regions, the first would clobber the second. Previously, we handled that by incrementing the live range end IP by 1, which works, but is excessive: the next instruction doesn't actually care about that. It might also be the end of control flow. This might keep values alive too long. What we really want is to say "my source and destinations interfere". This patch creates new infrastructure for doing just that, and teaches the register allocator to add interference when there's a hazard. For my vec4 case, we can determine this by switching on opcodes. For the SIMD16 case, we just move the existing code there. I audited our existing virtual opcodes that generate multiple instructions; I believe FS_OPCODE_PACK_HALF_2x16_SPLIT needs this treatment as well, but no others. v2: Rebased by mattst88. Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Matt Turner <mattst88@gmail.com>
2015-11-19 16:00:18 -08:00
bool has_source_and_destination_hazard() const;
/**
* Return whether \p arg is a control source of a virtual instruction which
* shouldn't contribute to the execution type and usual regioning
* restriction calculations of arithmetic instructions.
*/
bool is_control_source(unsigned arg) const;
/**
* Return the subset of flag registers read by the instruction as a bitset
* with byte granularity.
*/
unsigned flags_read(const gen_device_info *devinfo) const;
/**
* Return the subset of flag registers updated by the instruction (either
* partially or fully) as a bitset with byte granularity.
*/
unsigned flags_written() const;
fs_reg dst;
fs_reg *src;
uint8_t sources; /**< Number of fs_reg sources. */
bool last_rt:1;
bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */
tgl_swsb sched; /**< Scheduling info. */
};
/**
* Make the execution of \p inst dependent on the evaluation of a possibly
* inverted predicate.
*/
static inline fs_inst *
set_predicate_inv(enum brw_predicate pred, bool inverse,
fs_inst *inst)
{
inst->predicate = pred;
inst->predicate_inverse = inverse;
return inst;
}
/**
* Make the execution of \p inst dependent on the evaluation of a predicate.
*/
static inline fs_inst *
set_predicate(enum brw_predicate pred, fs_inst *inst)
{
return set_predicate_inv(pred, false, inst);
}
/**
* Write the result of evaluating the condition given by \p mod to a flag
* register.
*/
static inline fs_inst *
set_condmod(enum brw_conditional_mod mod, fs_inst *inst)
{
inst->conditional_mod = mod;
return inst;
}
/**
* Clamp the result of \p inst to the saturation range of its destination
* datatype.
*/
static inline fs_inst *
set_saturate(bool saturate, fs_inst *inst)
{
inst->saturate = saturate;
return inst;
}
/**
* Return the number of dataflow registers written by the instruction (either
* fully or partially) counted from 'floor(reg_offset(inst->dst) /
* register_size)'. The somewhat arbitrary register size unit is 4B for the
* UNIFORM and IMM files and 32B for all other files.
*/
inline unsigned
regs_written(const fs_inst *inst)
{
assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE +
inst->size_written -
MIN2(inst->size_written, reg_padding(inst->dst)),
REG_SIZE);
}
/**
* Return the number of dataflow registers read by the instruction (either
* fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
* register_size)'. The somewhat arbitrary register size unit is 4B for the
* UNIFORM and IMM files and 32B for all other files.
*/
inline unsigned
regs_read(const fs_inst *inst, unsigned i)
{
const unsigned reg_size =
inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 4 : REG_SIZE;
return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size +
inst->size_read(i) -
MIN2(inst->size_read(i), reg_padding(inst->src[i])),
reg_size);
}
static inline enum brw_reg_type
get_exec_type(const fs_inst *inst)
{
brw_reg_type exec_type = BRW_REGISTER_TYPE_B;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != BAD_FILE &&
!inst->is_control_source(i)) {
const brw_reg_type t = get_exec_type(inst->src[i].type);
if (type_sz(t) > type_sz(exec_type))
exec_type = t;
else if (type_sz(t) == type_sz(exec_type) &&
brw_reg_type_is_floating_point(t))
exec_type = t;
}
}
if (exec_type == BRW_REGISTER_TYPE_B)
exec_type = inst->dst.type;
assert(exec_type != BRW_REGISTER_TYPE_B);
/* Promotion of the execution type to 32-bit for conversions from or to
* half-float seems to be consistent with the following text from the
* Cherryview PRM Vol. 7, "Execution Data Type":
*
* "When single precision and half precision floats are mixed between
* source operands or between source and destination operand [..] single
* precision float is the execution datatype."
*
* and from "Register Region Restrictions":
*
* "Conversion between Integer and HF (Half Float) must be DWord aligned
* and strided by a DWord on the destination."
*/
if (type_sz(exec_type) == 2 &&
inst->dst.type != exec_type) {
if (exec_type == BRW_REGISTER_TYPE_HF)
exec_type = BRW_REGISTER_TYPE_F;
else if (inst->dst.type == BRW_REGISTER_TYPE_HF)
exec_type = BRW_REGISTER_TYPE_D;
}
return exec_type;
}
static inline unsigned
get_exec_type_size(const fs_inst *inst)
{
return type_sz(get_exec_type(inst));
}
static inline bool
is_send(const fs_inst *inst)
{
return inst->mlen || inst->is_send_from_grf();
}
/**
* Return whether the instruction isn't an ALU instruction and cannot be
* assumed to complete in-order.
*/
static inline bool
is_unordered(const fs_inst *inst)
{
return is_send(inst) || inst->is_math();
}
/**
* Return whether the following regioning restriction applies to the specified
* instruction. From the Cherryview PRM Vol 7. "Register Region
* Restrictions":
*
* "When source or destination datatype is 64b or operation is integer DWord
* multiply, regioning in Align1 must follow these rules:
*
* 1. Source and Destination horizontal stride must be aligned to the same qword.
* 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
* 3. Source and Destination offset must be the same, except the case of
* scalar source."
*/
static inline bool
has_dst_aligned_region_restriction(const gen_device_info *devinfo,
const fs_inst *inst)
{
const brw_reg_type exec_type = get_exec_type(inst);
/* Even though the hardware spec claims that "integer DWord multiply"
* operations are restricted, empirical evidence and the behavior of the
* simulator suggest that only 32x32-bit integer multiplication is
* restricted.
*/
const bool is_dword_multiply = !brw_reg_type_is_floating_point(exec_type) &&
((inst->opcode == BRW_OPCODE_MUL &&
MIN2(type_sz(inst->src[0].type), type_sz(inst->src[1].type)) >= 4) ||
(inst->opcode == BRW_OPCODE_MAD &&
MIN2(type_sz(inst->src[1].type), type_sz(inst->src[2].type)) >= 4));
if (type_sz(inst->dst.type) > 4 || type_sz(exec_type) > 4 ||
(type_sz(exec_type) == 4 && is_dword_multiply))
return devinfo->is_cherryview || gen_device_info_is_9lp(devinfo);
else
return false;
}
#endif