Files
third_party_mesa3d/src/glsl/nir/nir_live_variables.c

277 lines
8.6 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*/
#include "nir.h"
/*
* Basic liveness analysis. This works only in SSA form.
*
* This liveness pass treats phi nodes as being melded to the space between
* blocks so that the destinations of a phi are in the livein of the block
* in which it resides and the sources are in the liveout of the
* corresponding block. By formulating the liveness information in this
* way, we ensure that the definition of any variable dominates its entire
* live range. This is true because the only way that the definition of an
* SSA value may not dominate a use is if the use is in a phi node and the
* uses in phi no are in the live-out of the corresponding predecessor
* block but not in the live-in of the block containing the phi node.
*/
struct live_variables_state {
unsigned num_ssa_defs;
unsigned bitset_words;
bool progress;
};
static bool
index_ssa_def(nir_ssa_def *def, void *void_state)
{
struct live_variables_state *state = void_state;
if (def->parent_instr->type == nir_instr_type_ssa_undef)
def->live_index = 0;
else
def->live_index = state->num_ssa_defs++;
return true;
}
static bool
index_ssa_definitions_block(nir_block *block, void *state)
{
nir_foreach_instr(block, instr)
nir_foreach_ssa_def(instr, index_ssa_def, state);
return true;
}
static bool
init_liveness_block(nir_block *block, void *void_state)
{
struct live_variables_state *state = void_state;
block->live_in = reralloc(block, block->live_in, BITSET_WORD,
state->bitset_words);
memset(block->live_in, 0, state->bitset_words * sizeof(BITSET_WORD));
block->live_out = reralloc(block, block->live_out, BITSET_WORD,
state->bitset_words);
memset(block->live_out, 0, state->bitset_words * sizeof(BITSET_WORD));
return true;
}
static bool
set_src_live(nir_src *src, void *void_live)
{
BITSET_WORD *live = void_live;
if (!src->is_ssa)
return true;
if (src->ssa->live_index == 0)
return true; /* undefined variables are never live */
BITSET_SET(live, src->ssa->live_index);
return true;
}
static bool
set_ssa_def_dead(nir_ssa_def *def, void *void_live)
{
BITSET_WORD *live = void_live;
BITSET_CLEAR(live, def->live_index);
return true;
}
/* Phi nodes exist "between" blocks and all the phi nodes at the start of a
* block act "in parallel". When we propagate from the live_in of one
* block to the live out of the other, we have to kill any writes from phis
* and make live any sources.
*/
static void
propagate_across_edge(nir_block *pred, nir_block *succ,
struct live_variables_state *state)
{
BITSET_WORD live[state->bitset_words];
memcpy(live, succ->live_in, sizeof live);
nir_foreach_instr(succ, instr) {
if (instr->type != nir_instr_type_phi)
break;
nir_phi_instr *phi = nir_instr_as_phi(instr);
assert(phi->dest.is_ssa);
set_ssa_def_dead(&phi->dest.ssa, live);
}
nir_foreach_instr(succ, instr) {
if (instr->type != nir_instr_type_phi)
break;
nir_phi_instr *phi = nir_instr_as_phi(instr);
foreach_list_typed(nir_phi_src, src, node, &phi->srcs) {
if (src->pred == pred) {
set_src_live(&src->src, live);
break;
}
}
}
for (unsigned i = 0; i < state->bitset_words; ++i) {
state->progress = state->progress || (live[i] & ~pred->live_out[i]) != 0;
pred->live_out[i] |= live[i];
}
}
static bool
walk_instructions_block(nir_block *block, void *void_state)
{
struct live_variables_state *state = void_state;
/* The live out is the union (modulo phi nodes) of the live ins of its
* successors */
if (block->successors[0])
propagate_across_edge(block, block->successors[0], state);
if (block->successors[1])
propagate_across_edge(block, block->successors[1], state);
memcpy(block->live_in, block->live_out,
state->bitset_words * sizeof(BITSET_WORD));
nir_if *following_if = nir_block_get_following_if(block);
if (following_if)
set_src_live(&following_if->condition, block->live_in);
nir_foreach_instr_reverse(block, instr) {
/* Phi nodes are handled seperately so we want to skip them. Since
* we are going backwards and they are at the beginning, we can just
* break as soon as we see one.
*/
if (instr->type == nir_instr_type_phi)
break;
nir_foreach_ssa_def(instr, set_ssa_def_dead, block->live_in);
nir_foreach_src(instr, set_src_live, block->live_in);
}
return true;
}
static bool
src_does_not_use_def(nir_src *src, void *def)
{
return !src->is_ssa || src->ssa != (nir_ssa_def *)def;
}
static bool
search_for_use_after_instr(nir_instr *start, nir_ssa_def *def)
{
/* Only look for a use strictly after the given instruction */
struct exec_node *node = start->node.next;
while (!exec_node_is_tail_sentinel(node)) {
nir_instr *instr = exec_node_data(nir_instr, node, node);
if (!nir_foreach_src(instr, src_does_not_use_def, def))
return true;
node = node->next;
}
return false;
}
/* Returns true if def is live at instr assuming that def comes before
* instr in a pre DFS search of the dominance tree.
*/
static bool
nir_ssa_def_is_live_at(nir_ssa_def *def, nir_instr *instr)
{
if (BITSET_TEST(instr->block->live_out, def->live_index)) {
/* Since def dominates instr, if def is in the liveout of the block,
* it's live at instr
*/
return true;
} else {
if (BITSET_TEST(instr->block->live_in, def->live_index) ||
def->parent_instr->block == instr->block) {
/* In this case it is either live coming into instr's block or it
* is defined in the same block. In this case, we simply need to
* see if it is used after instr.
*/
return search_for_use_after_instr(instr, def);
} else {
return false;
}
}
}
bool
nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b)
{
if (a->parent_instr == b->parent_instr) {
/* Two variables defined at the same time interfere assuming at
* least one isn't dead.
*/
return true;
} else if (a->live_index == 0 || b->live_index == 0) {
/* If either variable is an ssa_undef, then there's no interference */
return false;
} else if (a->live_index < b->live_index) {
return nir_ssa_def_is_live_at(a, b->parent_instr);
} else {
return nir_ssa_def_is_live_at(b, a->parent_instr);
}
}
void
nir_live_variables_impl(nir_function_impl *impl)
{
struct live_variables_state state;
/* We start at 1 because we reserve the index value of 0 for ssa_undef
* instructions. Those are never live, so their liveness information
* can be compacted into a single bit.
*/
state.num_ssa_defs = 1;
nir_foreach_block(impl, index_ssa_definitions_block, &state);
/* We now know how many unique ssa definitions we have and we can go
* ahead and allocate live_in and live_out sets
*/
state.bitset_words = BITSET_WORDS(state.num_ssa_defs);
nir_foreach_block(impl, init_liveness_block, &state);
/* We need to propagate the liveness back through the CFG. Thanks to
* the wonders of SSA, this will run no more times than the depth of the
* deepest loop + 1.
*/
do {
state.progress = false;
nir_foreach_block_reverse(impl, walk_instructions_block, &state);
} while (state.progress);
}