Files
third_party_mesa3d/src/mesa/drivers/dri/intel/intel_screen.c

883 lines
27 KiB
C
Raw Normal View History

/**************************************************************************
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "glheader.h"
#include "context.h"
#include "framebuffer.h"
#include "matrix.h"
#include "renderbuffer.h"
#include "simple_list.h"
#include "utils.h"
#include "vblank.h"
#include "xmlpool.h"
#include "intel_screen.h"
#include "intel_buffers.h"
#include "intel_tex.h"
#include "intel_span.h"
#include "intel_ioctl.h"
#include "intel_fbo.h"
#include "intel_chipset.h"
#include "i915_drm.h"
#include "i830_dri.h"
#include "intel_regions.h"
#include "intel_batchbuffer.h"
#include "intel_bufmgr_ttm.h"
PUBLIC const char __driConfigOptions[] =
DRI_CONF_BEGIN
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_FTHROTTLE_MODE(DRI_CONF_FTHROTTLE_IRQS)
DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_DEF_INTERVAL_0)
/* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
* DRI_CONF_BO_REUSE_ALL
*/
DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 0, "0:1")
DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
DRI_CONF_ENUM(0, "Disable buffer object reuse")
DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
DRI_CONF_DESC_END
DRI_CONF_OPT_END
DRI_CONF_SECTION_END
DRI_CONF_SECTION_QUALITY
DRI_CONF_FORCE_S3TC_ENABLE(false)
DRI_CONF_ALLOW_LARGE_TEXTURES(2)
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_NO_RAST(false)
DRI_CONF_SECTION_END
DRI_CONF_END;
const GLuint __driNConfigOptions = 6;
#ifdef USE_NEW_INTERFACE
static PFNGLXCREATECONTEXTMODES create_context_modes = NULL;
#endif /*USE_NEW_INTERFACE */
/**
* Map all the memory regions described by the screen.
* \return GL_TRUE if success, GL_FALSE if error.
*/
GLboolean
intelMapScreenRegions(__DRIscreenPrivate * sPriv)
{
intelScreenPrivate *intelScreen = (intelScreenPrivate *) sPriv->private;
if (intelScreen->front.handle) {
if (drmMap(sPriv->fd,
intelScreen->front.handle,
intelScreen->front.size,
(drmAddress *) & intelScreen->front.map) != 0) {
_mesa_problem(NULL, "drmMap(frontbuffer) failed!");
return GL_FALSE;
}
}
else {
_mesa_warning(NULL, "no front buffer handle in intelMapScreenRegions!");
}
if (0)
_mesa_printf("Back 0x%08x ", intelScreen->back.handle);
if (drmMap(sPriv->fd,
intelScreen->back.handle,
intelScreen->back.size,
(drmAddress *) & intelScreen->back.map) != 0) {
intelUnmapScreenRegions(intelScreen);
return GL_FALSE;
}
if (intelScreen->third.handle) {
if (0)
_mesa_printf("Third 0x%08x ", intelScreen->third.handle);
if (drmMap(sPriv->fd,
intelScreen->third.handle,
intelScreen->third.size,
(drmAddress *) & intelScreen->third.map) != 0) {
intelUnmapScreenRegions(intelScreen);
return GL_FALSE;
}
}
if (0)
_mesa_printf("Depth 0x%08x ", intelScreen->depth.handle);
if (drmMap(sPriv->fd,
intelScreen->depth.handle,
intelScreen->depth.size,
(drmAddress *) & intelScreen->depth.map) != 0) {
intelUnmapScreenRegions(intelScreen);
return GL_FALSE;
}
if (0)
_mesa_printf("TEX 0x%08x ", intelScreen->tex.handle);
if (intelScreen->tex.size != 0) {
if (drmMap(sPriv->fd,
intelScreen->tex.handle,
intelScreen->tex.size,
(drmAddress *) & intelScreen->tex.map) != 0) {
intelUnmapScreenRegions(intelScreen);
return GL_FALSE;
}
}
if (0)
printf("Mappings: front: %p back: %p third: %p depth: %p tex: %p\n",
intelScreen->front.map,
intelScreen->back.map, intelScreen->third.map,
intelScreen->depth.map, intelScreen->tex.map);
return GL_TRUE;
}
void
intelUnmapScreenRegions(intelScreenPrivate * intelScreen)
{
#define REALLY_UNMAP 1
if (intelScreen->front.map) {
#if REALLY_UNMAP
if (drmUnmap(intelScreen->front.map, intelScreen->front.size) != 0)
printf("drmUnmap front failed!\n");
#endif
intelScreen->front.map = NULL;
}
if (intelScreen->back.map) {
#if REALLY_UNMAP
if (drmUnmap(intelScreen->back.map, intelScreen->back.size) != 0)
printf("drmUnmap back failed!\n");
#endif
intelScreen->back.map = NULL;
}
if (intelScreen->third.map) {
#if REALLY_UNMAP
if (drmUnmap(intelScreen->third.map, intelScreen->third.size) != 0)
printf("drmUnmap third failed!\n");
#endif
intelScreen->third.map = NULL;
}
if (intelScreen->depth.map) {
#if REALLY_UNMAP
drmUnmap(intelScreen->depth.map, intelScreen->depth.size);
intelScreen->depth.map = NULL;
#endif
}
if (intelScreen->tex.map) {
#if REALLY_UNMAP
drmUnmap(intelScreen->tex.map, intelScreen->tex.size);
intelScreen->tex.map = NULL;
#endif
}
}
static void
intelPrintDRIInfo(intelScreenPrivate * intelScreen,
__DRIscreenPrivate * sPriv, I830DRIPtr gDRIPriv)
{
fprintf(stderr, "*** Front size: 0x%x offset: 0x%x pitch: %d\n",
intelScreen->front.size, intelScreen->front.offset,
intelScreen->pitch);
fprintf(stderr, "*** Back size: 0x%x offset: 0x%x pitch: %d\n",
intelScreen->back.size, intelScreen->back.offset,
intelScreen->pitch);
fprintf(stderr, "*** Depth size: 0x%x offset: 0x%x pitch: %d\n",
intelScreen->depth.size, intelScreen->depth.offset,
intelScreen->pitch);
fprintf(stderr, "*** Texture size: 0x%x offset: 0x%x\n",
intelScreen->tex.size, intelScreen->tex.offset);
fprintf(stderr, "*** Memory : 0x%x\n", gDRIPriv->mem);
}
static void
intelPrintSAREA(const struct drm_i915_sarea * sarea)
{
fprintf(stderr, "SAREA: sarea width %d height %d\n", sarea->width,
sarea->height);
fprintf(stderr, "SAREA: pitch: %d\n", sarea->pitch);
fprintf(stderr,
"SAREA: front offset: 0x%08x size: 0x%x handle: 0x%x\n",
sarea->front_offset, sarea->front_size,
(unsigned) sarea->front_handle);
fprintf(stderr,
"SAREA: back offset: 0x%08x size: 0x%x handle: 0x%x\n",
sarea->back_offset, sarea->back_size,
(unsigned) sarea->back_handle);
fprintf(stderr, "SAREA: depth offset: 0x%08x size: 0x%x handle: 0x%x\n",
sarea->depth_offset, sarea->depth_size,
(unsigned) sarea->depth_handle);
fprintf(stderr, "SAREA: tex offset: 0x%08x size: 0x%x handle: 0x%x\n",
sarea->tex_offset, sarea->tex_size, (unsigned) sarea->tex_handle);
}
/**
* A number of the screen parameters are obtained/computed from
* information in the SAREA. This function updates those parameters.
*/
void
intelUpdateScreenFromSAREA(intelScreenPrivate * intelScreen,
struct drm_i915_sarea * sarea)
{
intelScreen->width = sarea->width;
intelScreen->height = sarea->height;
intelScreen->pitch = sarea->pitch;
intelScreen->front.offset = sarea->front_offset;
intelScreen->front.handle = sarea->front_handle;
intelScreen->front.size = sarea->front_size;
intelScreen->front.tiled = sarea->front_tiled;
intelScreen->back.offset = sarea->back_offset;
intelScreen->back.handle = sarea->back_handle;
intelScreen->back.size = sarea->back_size;
intelScreen->back.tiled = sarea->back_tiled;
if (intelScreen->driScrnPriv->ddx_version.minor >= 8) {
intelScreen->third.offset = sarea->third_offset;
intelScreen->third.handle = sarea->third_handle;
intelScreen->third.size = sarea->third_size;
intelScreen->third.tiled = sarea->third_tiled;
}
intelScreen->depth.offset = sarea->depth_offset;
intelScreen->depth.handle = sarea->depth_handle;
intelScreen->depth.size = sarea->depth_size;
intelScreen->depth.tiled = sarea->depth_tiled;
if (intelScreen->driScrnPriv->ddx_version.minor >= 9) {
intelScreen->front.bo_handle = sarea->front_bo_handle;
intelScreen->back.bo_handle = sarea->back_bo_handle;
intelScreen->third.bo_handle = sarea->third_bo_handle;
intelScreen->depth.bo_handle = sarea->depth_bo_handle;
} else {
intelScreen->front.bo_handle = -1;
intelScreen->back.bo_handle = -1;
intelScreen->third.bo_handle = -1;
intelScreen->depth.bo_handle = -1;
}
intelScreen->tex.offset = sarea->tex_offset;
intelScreen->logTextureGranularity = sarea->log_tex_granularity;
intelScreen->tex.handle = sarea->tex_handle;
intelScreen->tex.size = sarea->tex_size;
if (0)
intelPrintSAREA(sarea);
}
2008-06-11 19:33:14 -06:00
/**
* DRI2 entrypoint
*/
static void
intelHandleDrawableConfig(__DRIdrawablePrivate *dPriv,
__DRIcontextPrivate *pcp,
__DRIDrawableConfigEvent *event)
{
struct intel_framebuffer *intel_fb = dPriv->driverPrivate;
struct intel_region *region = NULL;
struct intel_renderbuffer *rb, *depth_rb, *stencil_rb;
struct intel_context *intel = pcp->driverPrivate;
int cpp, pitch;
cpp = intel->ctx.Visual.rgbBits / 8;
pitch = ((cpp * dPriv->w + 63) & ~63) / cpp;
rb = intel_fb->color_rb[1];
if (rb) {
region = intel_region_alloc(intel, cpp, pitch, dPriv->h);
intel_renderbuffer_set_region(rb, region);
}
rb = intel_fb->color_rb[2];
if (rb) {
region = intel_region_alloc(intel, cpp, pitch, dPriv->h);
intel_renderbuffer_set_region(rb, region);
}
depth_rb = intel_get_renderbuffer(&intel_fb->Base, BUFFER_DEPTH);
stencil_rb = intel_get_renderbuffer(&intel_fb->Base, BUFFER_STENCIL);
if (depth_rb || stencil_rb)
region = intel_region_alloc(intel, cpp, pitch, dPriv->h);
if (depth_rb)
intel_renderbuffer_set_region(depth_rb, region);
if (stencil_rb)
intel_renderbuffer_set_region(stencil_rb, region);
/* FIXME: Tell the X server about the regions we just allocated and
* attached. */
}
#define BUFFER_FLAG_TILED 0x0100
2008-06-11 19:33:14 -06:00
/**
* DRI2 entrypoint
*/
static void
intelHandleBufferAttach(__DRIdrawablePrivate *dPriv,
__DRIcontextPrivate *pcp,
__DRIBufferAttachEvent *ba)
{
struct intel_framebuffer *intel_fb = dPriv->driverPrivate;
struct intel_renderbuffer *rb;
struct intel_region *region;
struct intel_context *intel = pcp->driverPrivate;
GLuint tiled;
switch (ba->buffer.attachment) {
case DRI_DRAWABLE_BUFFER_FRONT_LEFT:
rb = intel_fb->color_rb[0];
break;
case DRI_DRAWABLE_BUFFER_BACK_LEFT:
rb = intel_fb->color_rb[0];
break;
case DRI_DRAWABLE_BUFFER_DEPTH:
rb = intel_get_renderbuffer(&intel_fb->Base, BUFFER_DEPTH);
break;
case DRI_DRAWABLE_BUFFER_STENCIL:
rb = intel_get_renderbuffer(&intel_fb->Base, BUFFER_STENCIL);
break;
case DRI_DRAWABLE_BUFFER_ACCUM:
default:
fprintf(stderr, "unhandled buffer attach event, attacment type %d\n",
ba->buffer.attachment);
return;
}
#if 0
/* FIXME: Add this so we can filter out when the X server sends us
* attachment events for the buffers we just allocated. Need to
* get the BO handle for a render buffer. */
if (intel_renderbuffer_get_region_handle(rb) == ba->buffer.handle)
return;
#endif
tiled = (ba->buffer.flags & BUFFER_FLAG_TILED) > 0;
region = intel_region_alloc_for_handle(intel, ba->buffer.cpp,
ba->buffer.pitch / ba->buffer.cpp,
dPriv->h, tiled,
ba->buffer.handle);
intel_renderbuffer_set_region(rb, region);
}
static const __DRItexOffsetExtension intelTexOffsetExtension = {
{ __DRI_TEX_OFFSET },
intelSetTexOffset,
};
static const __DRItexBufferExtension intelTexBufferExtension = {
{ __DRI_TEX_BUFFER, __DRI_TEX_BUFFER_VERSION },
intelSetTexBuffer,
};
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
static const __DRIextension *intelScreenExtensions[] = {
&driReadDrawableExtension,
&driCopySubBufferExtension.base,
&driSwapControlExtension.base,
&driFrameTrackingExtension.base,
&driMediaStreamCounterExtension.base,
&intelTexOffsetExtension.base,
&intelTexBufferExtension.base,
NULL
};
static GLboolean
intel_get_param(__DRIscreenPrivate *psp, int param, int *value)
{
int ret;
struct drm_i915_getparam gp;
gp.param = param;
gp.value = value;
ret = drmCommandWriteRead(psp->fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
if (ret) {
fprintf(stderr, "drm_i915_getparam: %d\n", ret);
return GL_FALSE;
}
return GL_TRUE;
}
static GLboolean intelInitDriver(__DRIscreenPrivate *sPriv)
{
intelScreenPrivate *intelScreen;
I830DRIPtr gDRIPriv = (I830DRIPtr) sPriv->pDevPriv;
struct drm_i915_sarea *sarea;
if (sPriv->devPrivSize != sizeof(I830DRIRec)) {
fprintf(stderr,
"\nERROR! sizeof(I830DRIRec) does not match passed size from device driver\n");
return GL_FALSE;
}
/* Allocate the private area */
intelScreen = (intelScreenPrivate *) CALLOC(sizeof(intelScreenPrivate));
if (!intelScreen) {
fprintf(stderr, "\nERROR! Allocating private area failed\n");
return GL_FALSE;
}
/* parse information in __driConfigOptions */
driParseOptionInfo(&intelScreen->optionCache,
__driConfigOptions, __driNConfigOptions);
intelScreen->driScrnPriv = sPriv;
sPriv->private = (void *) intelScreen;
intelScreen->sarea_priv_offset = gDRIPriv->sarea_priv_offset;
sarea = (struct drm_i915_sarea *)
(((GLubyte *) sPriv->pSAREA) + intelScreen->sarea_priv_offset);
intelScreen->deviceID = gDRIPriv->deviceID;
intelUpdateScreenFromSAREA(intelScreen, sarea);
if (!intelMapScreenRegions(sPriv)) {
fprintf(stderr, "\nERROR! mapping regions\n");
_mesa_free(intelScreen);
sPriv->private = NULL;
return GL_FALSE;
}
intelScreen->sarea_priv_offset = gDRIPriv->sarea_priv_offset;
if (0)
intelPrintDRIInfo(intelScreen, sPriv, gDRIPriv);
intelScreen->drmMinor = sPriv->drm_version.minor;
/* Determine if IRQs are active? */
if (!intel_get_param(sPriv, I915_PARAM_IRQ_ACTIVE,
&intelScreen->irq_active))
return GL_FALSE;
/* Determine if batchbuffers are allowed */
if (!intel_get_param(sPriv, I915_PARAM_ALLOW_BATCHBUFFER,
&intelScreen->allow_batchbuffer))
return GL_FALSE;
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
sPriv->extensions = intelScreenExtensions;
return GL_TRUE;
}
static void
intelDestroyScreen(__DRIscreenPrivate * sPriv)
{
intelScreenPrivate *intelScreen = (intelScreenPrivate *) sPriv->private;
intelUnmapScreenRegions(intelScreen);
FREE(intelScreen);
sPriv->private = NULL;
}
/**
* This is called when we need to set up GL rendering to a new X window.
*/
static GLboolean
intelCreateBuffer(__DRIscreenPrivate * driScrnPriv,
__DRIdrawablePrivate * driDrawPriv,
const __GLcontextModes * mesaVis, GLboolean isPixmap)
{
intelScreenPrivate *screen = (intelScreenPrivate *) driScrnPriv->private;
if (isPixmap) {
return GL_FALSE; /* not implemented */
}
else {
GLboolean swStencil = (mesaVis->stencilBits > 0 &&
mesaVis->depthBits != 24);
GLenum rgbFormat = (mesaVis->redBits == 5 ? GL_RGB5 : GL_RGBA8);
struct intel_framebuffer *intel_fb = CALLOC_STRUCT(intel_framebuffer);
if (!intel_fb)
return GL_FALSE;
_mesa_initialize_framebuffer(&intel_fb->Base, mesaVis);
/* setup the hardware-based renderbuffers */
{
intel_fb->color_rb[0] = intel_create_renderbuffer(rgbFormat);
_mesa_add_renderbuffer(&intel_fb->Base, BUFFER_FRONT_LEFT,
&intel_fb->color_rb[0]->Base);
}
if (mesaVis->doubleBufferMode) {
intel_fb->color_rb[1] = intel_create_renderbuffer(rgbFormat);
_mesa_add_renderbuffer(&intel_fb->Base, BUFFER_BACK_LEFT,
&intel_fb->color_rb[1]->Base);
if (screen->third.handle) {
struct gl_renderbuffer *tmp_rb = NULL;
intel_fb->color_rb[2] = intel_create_renderbuffer(rgbFormat);
_mesa_reference_renderbuffer(&tmp_rb, &intel_fb->color_rb[2]->Base);
}
}
if (mesaVis->depthBits == 24) {
if (mesaVis->stencilBits == 8) {
/* combined depth/stencil buffer */
struct intel_renderbuffer *depthStencilRb
= intel_create_renderbuffer(GL_DEPTH24_STENCIL8_EXT);
/* note: bind RB to two attachment points */
_mesa_add_renderbuffer(&intel_fb->Base, BUFFER_DEPTH,
&depthStencilRb->Base);
_mesa_add_renderbuffer(&intel_fb->Base, BUFFER_STENCIL,
&depthStencilRb->Base);
} else {
struct intel_renderbuffer *depthRb
= intel_create_renderbuffer(GL_DEPTH_COMPONENT24);
_mesa_add_renderbuffer(&intel_fb->Base, BUFFER_DEPTH,
&depthRb->Base);
}
}
else if (mesaVis->depthBits == 16) {
/* just 16-bit depth buffer, no hw stencil */
struct intel_renderbuffer *depthRb
= intel_create_renderbuffer(GL_DEPTH_COMPONENT16);
_mesa_add_renderbuffer(&intel_fb->Base, BUFFER_DEPTH, &depthRb->Base);
}
/* now add any/all software-based renderbuffers we may need */
_mesa_add_soft_renderbuffers(&intel_fb->Base,
GL_FALSE, /* never sw color */
GL_FALSE, /* never sw depth */
swStencil, mesaVis->accumRedBits > 0,
GL_FALSE, /* never sw alpha */
GL_FALSE /* never sw aux */ );
driDrawPriv->driverPrivate = (void *) intel_fb;
return GL_TRUE;
}
}
static void
intelDestroyBuffer(__DRIdrawablePrivate * driDrawPriv)
{
_mesa_unreference_framebuffer((GLframebuffer **)(&(driDrawPriv->driverPrivate)));
}
/**
* Get information about previous buffer swaps.
*/
static int
intelGetSwapInfo(__DRIdrawablePrivate * dPriv, __DRIswapInfo * sInfo)
{
struct intel_framebuffer *intel_fb;
if ((dPriv == NULL) || (dPriv->driverPrivate == NULL)
|| (sInfo == NULL)) {
return -1;
}
intel_fb = dPriv->driverPrivate;
sInfo->swap_count = intel_fb->swap_count;
sInfo->swap_ust = intel_fb->swap_ust;
sInfo->swap_missed_count = intel_fb->swap_missed_count;
sInfo->swap_missed_usage = (sInfo->swap_missed_count != 0)
? driCalculateSwapUsage(dPriv, 0, intel_fb->swap_missed_ust)
: 0.0;
return 0;
}
/* There are probably better ways to do this, such as an
* init-designated function to register chipids and createcontext
* functions.
*/
extern GLboolean i830CreateContext(const __GLcontextModes * mesaVis,
__DRIcontextPrivate * driContextPriv,
void *sharedContextPrivate);
extern GLboolean i915CreateContext(const __GLcontextModes * mesaVis,
__DRIcontextPrivate * driContextPriv,
void *sharedContextPrivate);
extern GLboolean brwCreateContext(const __GLcontextModes * mesaVis,
__DRIcontextPrivate * driContextPriv,
void *sharedContextPrivate);
static GLboolean
intelCreateContext(const __GLcontextModes * mesaVis,
__DRIcontextPrivate * driContextPriv,
void *sharedContextPrivate)
{
__DRIscreenPrivate *sPriv = driContextPriv->driScreenPriv;
intelScreenPrivate *intelScreen = (intelScreenPrivate *) sPriv->private;
#ifdef I915
if (IS_9XX(intelScreen->deviceID)) {
if (!IS_965(intelScreen->deviceID)) {
return i915CreateContext(mesaVis, driContextPriv,
sharedContextPrivate);
}
} else {
return i830CreateContext(mesaVis, driContextPriv, sharedContextPrivate);
}
#else
if (IS_965(intelScreen->deviceID))
return brwCreateContext(mesaVis, driContextPriv, sharedContextPrivate);
#endif
fprintf(stderr, "Unrecognized deviceID %x\n", intelScreen->deviceID);
return GL_FALSE;
}
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
static __DRIconfig **
intelFillInModes(__DRIscreenPrivate *psp,
unsigned pixel_bits, unsigned depth_bits,
unsigned stencil_bits, GLboolean have_back_buffer)
{
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
__DRIconfig **configs;
__GLcontextModes *m;
unsigned depth_buffer_factor;
unsigned back_buffer_factor;
GLenum fb_format;
GLenum fb_type;
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
int i;
/* GLX_SWAP_COPY_OML is only supported because the Intel driver doesn't
* support pageflipping at all.
*/
static const GLenum back_buffer_modes[] = {
GLX_NONE, GLX_SWAP_UNDEFINED_OML, GLX_SWAP_COPY_OML
};
u_int8_t depth_bits_array[3];
u_int8_t stencil_bits_array[3];
depth_bits_array[0] = 0;
depth_bits_array[1] = depth_bits;
depth_bits_array[2] = depth_bits;
/* Just like with the accumulation buffer, always provide some modes
* with a stencil buffer. It will be a sw fallback, but some apps won't
* care about that.
*/
stencil_bits_array[0] = 0;
stencil_bits_array[1] = 0;
if (depth_bits == 24)
stencil_bits_array[1] = (stencil_bits == 0) ? 8 : stencil_bits;
stencil_bits_array[2] = (stencil_bits == 0) ? 8 : stencil_bits;
depth_buffer_factor = ((depth_bits != 0) || (stencil_bits != 0)) ? 3 : 1;
back_buffer_factor = (have_back_buffer) ? 3 : 1;
if (pixel_bits == 16) {
fb_format = GL_RGB;
fb_type = GL_UNSIGNED_SHORT_5_6_5;
}
else {
fb_format = GL_BGRA;
fb_type = GL_UNSIGNED_INT_8_8_8_8_REV;
}
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
configs = driCreateConfigs(fb_format, fb_type,
depth_bits_array, stencil_bits_array,
depth_buffer_factor, back_buffer_modes,
back_buffer_factor);
if (configs == NULL) {
fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
__LINE__);
return NULL;
}
/* Mark the visual as slow if there are "fake" stencil bits.
*/
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
for (i = 0; configs[i]; i++) {
m = &configs[i]->modes;
if ((m->stencilBits != 0) && (m->stencilBits != stencil_bits)) {
m->visualRating = GLX_SLOW_CONFIG;
}
}
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
return configs;
}
/**
* This is the driver specific part of the createNewScreen entry point.
2008-06-11 19:33:14 -06:00
* Called when using legacy DRI.
*
* \todo maybe fold this into intelInitDriver
*
* \return the __GLcontextModes supported by this driver
*/
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
static const __DRIconfig **intelInitScreen(__DRIscreenPrivate *psp)
{
#ifdef I915
static const __DRIversion ddx_expected = { 1, 5, 0 };
#else
static const __DRIversion ddx_expected = { 1, 6, 0 };
#endif
static const __DRIversion dri_expected = { 4, 0, 0 };
static const __DRIversion drm_expected = { 1, 5, 0 };
I830DRIPtr dri_priv = (I830DRIPtr) psp->pDevPriv;
if (!driCheckDriDdxDrmVersions2("i915",
&psp->dri_version, &dri_expected,
&psp->ddx_version, &ddx_expected,
&psp->drm_version, &drm_expected)) {
return NULL;
}
/* Calling driInitExtensions here, with a NULL context pointer,
* does not actually enable the extensions. It just makes sure
* that all the dispatch offsets for all the extensions that
* *might* be enables are known. This is needed because the
* dispatch offsets need to be known when _mesa_context_create is
* called, but we can't enable the extensions until we have a
* context pointer.
*
* Hello chicken. Hello egg. How are you two today?
*/
intelInitExtensions(NULL, GL_TRUE);
if (!intelInitDriver(psp))
return NULL;
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
psp->extensions = intelScreenExtensions;
return (const __DRIconfig **)
intelFillInModes(psp, dri_priv->cpp * 8,
(dri_priv->cpp == 2) ? 16 : 24,
(dri_priv->cpp == 2) ? 0 : 8, 1);
}
struct intel_context *intelScreenContext(intelScreenPrivate *intelScreen)
{
/*
* This should probably change to have the screen allocate a dummy
* context at screen creation. For now just use the current context.
*/
GET_CURRENT_CONTEXT(ctx);
if (ctx == NULL) {
_mesa_problem(NULL, "No current context in intelScreenContext\n");
return NULL;
}
return intel_context(ctx);
}
/**
* This is the driver specific part of the createNewScreen entry point.
2008-06-11 19:33:14 -06:00
* Called when using DRI2.
*
* \return the __GLcontextModes supported by this driver
*/
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
static const
__DRIconfig **intelInitScreen2(__DRIscreenPrivate *psp)
{
intelScreenPrivate *intelScreen;
/* Calling driInitExtensions here, with a NULL context pointer,
* does not actually enable the extensions. It just makes sure
* that all the dispatch offsets for all the extensions that
* *might* be enables are known. This is needed because the
* dispatch offsets need to be known when _mesa_context_create is
* called, but we can't enable the extensions until we have a
* context pointer.
*
* Hello chicken. Hello egg. How are you two today?
*/
intelInitExtensions(NULL, GL_TRUE);
/* Allocate the private area */
intelScreen = (intelScreenPrivate *) CALLOC(sizeof(intelScreenPrivate));
if (!intelScreen) {
fprintf(stderr, "\nERROR! Allocating private area failed\n");
return GL_FALSE;
}
/* parse information in __driConfigOptions */
driParseOptionInfo(&intelScreen->optionCache,
__driConfigOptions, __driNConfigOptions);
intelScreen->driScrnPriv = psp;
psp->private = (void *) intelScreen;
intelScreen->drmMinor = psp->drm_version.minor;
/* Determine chipset ID? */
if (!intel_get_param(psp, I915_PARAM_CHIPSET_ID,
&intelScreen->deviceID))
return GL_FALSE;
/* Determine if IRQs are active? */
if (!intel_get_param(psp, I915_PARAM_IRQ_ACTIVE,
&intelScreen->irq_active))
return GL_FALSE;
/* Determine if batchbuffers are allowed */
if (!intel_get_param(psp, I915_PARAM_ALLOW_BATCHBUFFER,
&intelScreen->allow_batchbuffer))
return GL_FALSE;
if (!intelScreen->allow_batchbuffer) {
fprintf(stderr, "batch buffer not allowed\n");
return GL_FALSE;
}
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
psp->extensions = intelScreenExtensions;
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
return driConcatConfigs(intelFillInModes(psp, 16, 16, 0, 1),
intelFillInModes(psp, 32, 24, 8, 1));
}
DRI interface changes and DRI2 direct rendering support. Add DRI2 direct rendering support to libGL and add DRI2 client side protocol code. Extend the GLX 1.3 create drawable functions in glx_pbuffer.c to call into the DRI driver when possible. Introduce __DRIconfig, opaque struct that represents a DRI driver configuration. Get's rid of the open coded __GLcontextModes in the DRI driver interface and the context modes create and destroy functions that the loader was requires to provide. glcore.h is no longer part of the DRI driver interface. The DRI config is GL binding agnostic, that is, not specific to GLX, EGL or other bindings. The core API is now also an extension, and the driver exports a list of extensions as the symbol __driDriverExtensions, which the loader must dlsym() for. The list of extension will always include the DRI core extension, which allows creating and manipulating DRI screens, drawables and contexts. The DRI legacy extension, when available, provides alternative entry points for creating the DRI objects that work with the XF86DRI infrastructure. Change DRI2 client code to not use drm drawables or contexts. We never used drm_drawable_t's and the only use for drm_context_t was as a unique identifier when taking the lock. We now just allocate a unique lock ID out of the DRILock sarea block. Once we get rid of the lock entirely, we can drop this hack. Change the interface between dri_util.c and the drivers, so that the drivers now export the DriverAPI struct as driDriverAPI instead of the InitScreen entry point. This lets us avoid dlsym()'ing for the DRI2 init screen function to see if DRI2 is supported by the driver.
2008-03-26 19:26:59 -04:00
const struct __DriverAPIRec driDriverAPI = {
.InitScreen = intelInitScreen,
.DestroyScreen = intelDestroyScreen,
.CreateContext = intelCreateContext,
.DestroyContext = intelDestroyContext,
.CreateBuffer = intelCreateBuffer,
.DestroyBuffer = intelDestroyBuffer,
.SwapBuffers = intelSwapBuffers,
.MakeCurrent = intelMakeCurrent,
.UnbindContext = intelUnbindContext,
.GetSwapInfo = intelGetSwapInfo,
.GetDrawableMSC = driDrawableGetMSC32,
.WaitForMSC = driWaitForMSC32,
.CopySubBuffer = intelCopySubBuffer,
.InitScreen2 = intelInitScreen2,
.HandleDrawableConfig = intelHandleDrawableConfig,
.HandleBufferAttach = intelHandleBufferAttach,
};